В качестве отправной точки рассмотрим похоже совсем несвязанный вопрос, который теоретики долбили со всех сторон с конца 1980-х гг. Математикам и физикам было давно известно, что при свёртывании шести пространственных измерений в многообразие Калаби–Яу существует два типа сфер, вложенных в структуру пространства. Сферы первого типа двумерные и похожи на поверхность надувного мяча. Они играли большую роль в обсуждении флоп-перестроек с разрывом пространства в главе 11. Другие сферы представить сложнее, но они встречаются столь же часто. Это
Изучая уравнения теории струн, физики осознали возможность и даже высокую вероятность того, что в процессе эволюции во времени эти трёхмерные сферы могут стягиваться, коллапсировать до исчезающе малых размеров. Но что произойдёт, задавались вопросом физики, если и структура пространства будет стягиваться аналогичным образом? Не приведёт ли такое сжатие пространства к каким-нибудь катастрофическим эффектам? Подобный вопрос уже ставился и был решён нами в главе 11, но там рассматривался только коллапс двумерных сфер, а сейчас наше внимание сосредоточено на изучении трёхмерных сфер. (Так же, как и в главе 11, поскольку стягивается лишь часть многообразия Калаби–Яу, а не всё пространство, то аргументы главы 10, позволяющие отождествить малые и большие радиусы, неприменимы.) И вот в чём состоит качественное отличие, связанное с изменением числа измерений.
{113}Как описывалось в главе 11, важнейшим свойством движущихся струн является их способность экранировать двумерные сферы. Иными словами, двумерная мировая поверхность струны может целиком окружить двумерную сферу, как показано на рис. 11.6. Этого оказывается достаточно для защиты от катастрофических последствий, возможных при коллапсе двумерной сферы. Но сейчас мы рассматриваем другой тип сфер в пространстве Калаби–Яу, и у этих сфер слишком много измерений, чтобы движущаяся струна могла их окружить. Если понимание последнего утверждения вызывает у читателя сложности, можно без проблем рассмотреть аналогию с числом размерностей на единицу меньше. Трёхмерные сферы можно представлять себе в виде двумерных поверхностей надувного мяча, если при этом одномерные струны рассматривать в качестве нульмерных точечных частиц. Ясно, что нульмерная точечная частица не сможет окружить двумерную сферу, поэтому одномерная струна не сможет опоясать трёхмерную сферу.Подобные рассуждения привели теоретиков к выводу, что при коллапсе трёхмерной сферы внутри пространства Калаби–Яу (который вполне допускается приближёнными уравнениями, если вообще не является рядовым явлением в теории струн) возможны катастрофические последствия. Действительно, из известных к середине 1990-х гг. приближённых уравнений теории струн, казалось бы, следовало, что если такой коллапс случится, Вселенной придёт конец: некоторые расходимости, которые сокращаются в теории струн, в случае подобного перетягивания структуры пространства перестанут сокращаться. Несколько лет физикам приходилось мириться с этим неприятным, хотя и не окончательно установленным фактом. Но в 1995 г. Эндрю Строминджер показал, что подобные предсказания неверны, и конец света ещё далёк.