Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Представим себе две частицы, которые катятся по одномерной линии, подобной пространственному измерению Линляндии. За исключением случая, когда их скорости равны, рано или поздно одна из частиц догонит другую, и они столкнутся. Заметим, однако, что если те же точечные частицы будут двигаться по двумерной поверхности, весьма вероятно, что столкновение никогда не произойдёт. Второе пространственное измерение открывает окно в новый мир траекторий каждой частицы, и большинство траекторий двух миров не пересекаются в одной и той же точке в один момент времени. В трёх, четырёх или большем числе измерений становится всё менее вероятно, что частицы когда-либо столкнутся. Бранденбергер и Вафа поняли, что аналогичное утверждение справедливо, если заменить точечные частицы струнными петлями, намотанными вокруг пространственных измерений. И хотя их вывод гораздо сложнее представить себе наглядно, но в трёх(или менее) циклических пространственных измерениях две намотанные струны, скорее всего, столкнутся, как две точечные частицы в одном измерении. Но в четырёх и в большем числе измерений вероятность столкновения двух намотанных струн уменьшается, как и в случае частиц в двух и большем числе измерений. {131}

Вырисовывается следующая картина. В первый момент существования Вселенной в неразберихе высоких, но конечных температур все циклические измерения пытаются расшириться. Намотанные струны их сдерживают в границах исходных планковских размеров. Однако рано или поздно случайная температурная флуктуация приведёт к тому, что три из этих измерений станут больше других и, согласно нашему обсуждению, вероятность столкновения намотанных вокруг этих измерений струн резко увеличится. Примерно в половине этих столкновений будут участвовать пары струна/антиструна, и такие пары аннигилируют, значительно ослабляя сдерживающую силу и позволяя этим трём измерениям расширяться всё больше. А чем больше они расширяются, тем менее вероятно, что их обмотают другие струны, так как для этого от струн будет требоваться всё больше энергии. Таким образом, расширение подстёгивается само собой, и при увеличении размеров становится всё меньше препятствий к дальнейшему расширению. Теперь мы можем представить, что эти три пространственных измерения будут эволюционировать по описанному выше сценарию и достигнут размеров наблюдаемой Вселенной.

Космология и вид пространств Калаби–Яу

Для простоты Бранденбергер и Вафа считали все пространственные измерения циклическими. Это допущение оправдано. Как отмечалось в главе 8, если циклические измерения достаточно велики и замыкаются на себя за границами современных возможностей наблюдения, циклической вид совместим с видом наблюдаемой нами Вселенной. Но для измерений, размер которых остаётся малым, более реалистичный исход заключается в их свёртывании в более сложное пространство Калаби–Яу. Ключевой вопрос, безусловно, в том, в какое именно пространство. Каким образом осуществляется выбор конкретного пространства? Никому не удалось пока что на это ответить. Однако, объединяя результаты об изменении топологии, описанные в предыдущей главе, с подобными космологическими прозрениями, можно предложить схему ответа на данный вопрос. Мы знаем, что многообразия Калаби–Яу можно связать друг с другом посредством конифолдных переходов с разрывом пространства. Можно представить себе, что в моменты хаоса и огромных температур после Большого взрыва свёрнутые компоненты пространства Калаби–Яу остаются малыми, но участвуют в безумном карнавале стремительных превращений, принимая облик различных пространств Калаби–Яу в процессе беспрестанных разрывов и восстановлений ткани пространства. По мере того как Вселенная охлаждается, а три измерения становятся всё больше, переходы от одного пространства Калаби–Яу к другому происходят реже и дополнительные измерения в конце концов упаковываются в определённое многообразие Калаби–Яу, предположительно ответственное за физические свойства наблюдаемого нами мира. Дело чести для физиков — подробно описать эволюцию компоненты Калаби–Яу нашего пространства, чтобы современный её вид можно было вывести из теоретических принципов. Мы видим, что с учётом новых результатов о возможности непрерывного преобразования пространств Калаби–Яу друг в друга выбор одного многообразия Калаби–Яу из множества других может, на самом деле, быть сведён к задаче из космологии. {132}

До начала?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже