Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Чтобы узнать это, мы попросили Слима и Джима, которые как раз катаются на этом аттракционе, выполнить для нас несколько измерений. Мы бросили одну из наших рулеток Слиму, который отправился измерять длину окружности, а другую — Джиму, который будет измерять радиус. Чтобы увидеть всё наилучшим образом, взглянем на круг с высоты птичьего полёта, как показано на рис. 3.1. Мы снабдили снимок стрелками, показывающими мгновенное направление движения в каждой точке. Как только Слим начинает измерять длину окружности, нам, из положения сверху, сразу становится понятно, что он получит не то значение, которое получили мы. Когда он прикладывает рулетку к окружности, мы замечаем, что её длина уменьшается. Это не что иное, как обсуждавшееся в главе 2 лоренцево сокращение, которое связано с тем, что длина тела представляется уменьшившейся в направлении его движения. Уменьшение длины рулетки означает, что мы должны будем уложить её, совмещая начало с концом, большеечисло раз, чтобы обойти весь круг. Так как Слим продолжает считать, что длина рулетки составляет один метр (поскольку между ним и его рулеткой нет относительного перемещения, он думает, что она имеет свою обычную длину в один метр), он измерит большуюдлину окружности, чем мы. (Если это кажется парадоксальным, вам может помочь примечание {16}.)

Рис. 3.1.Линейка Слима укорачивается, так как она прикладывается вдоль направления движения круга. Линейка же Джима лежит вдоль радиуса круга, перпендикулярно направлению движения, и поэтому её длина не уменьшается

Ну, а что насчёт радиуса? Джим использует тот же метод определения радиуса, и нам, с высоты птичьего полёта, видно, что он получит такое же значение, которое получили мы. Причина состоит в том, что его рулетка располагается не по мгновенному направлению движения круга (как было при измерении длины окружности). Она направлена под углом 90 градусов к направлению движения и поэтому не сокращаетсяв направлении своей длины. Следовательно, Джим получит точно такое же значение величины радиуса, какое получили мы.

Но теперь, рассчитав отношение длины окружности колеса к его радиусу, Слим и Джим получат число, которое будет превышать полученное нами значение 2 , поскольку у них длина окружности оказалась больше, а радиус остался тем же самым. Что за чудеса? Как может быть, чтобы для какой-нибудь фигуры в форме окружности нарушалось установленное ещё древними греками правило, согласно которому для любой окружности это отношение в точности равно 2 ?

Вот объяснение Эйнштейна. Результат древних греков справедлив для окружностей, нарисованных на плоской поверхности. Но подобно тому, как кривые зеркала в парке развлечений искажают нормальную пространственную структуру вашего отражения, так и пространственная форма окружности исказится, если она будет нарисована на искривлённой или деформированной поверхности: отношение длины окружности к радиусу для такой окружности, как правило, не будетравно 2 .

В качестве примера на рис. 3.2 приведены три окружности одинакового радиуса. Длины этих окружностей различны. Длина окружности ( б), нарисованной на искривлённой поверхности сферы, меньше длины окружности ( а), нарисованной на плоской поверхности, несмотря на то, что они имеют одинаковый радиус. Искривлённый характер поверхности сферы приводит к тому, что радиальные линии, проведённые из центра, слегка сходятся друг к другу, приводя к небольшому уменьшению длины окружности. Длина окружности ( в), нарисованной на седловидной искривлённой поверхности, больше, чем длина окружности, изображённой на плоской поверхности. Свойства кривизны седловидной поверхности приводят к тому, что радиальные линии слегка расходятся, вызывая небольшое увеличение длины окружности. Эти наблюдения показывают, что отношение длины окружности к радиусу для ( б) будет меньше, чем 2 , а для ( в) — больше, чем 2 . Но отклонения от значения 2 , особенно в сторону увеличения, как в примере ( в), — это как раз то, что было обнаружено в случае вращающегося аттракциона. Подобные наблюдения привели Эйнштейна к идее, что нарушение «обычной», евклидовой геометрии объясняется кривизной пространства. Плоская геометрия древних греков, которой тысячи лет учат школьников, попросту не применима к объектам на вращающемся круге. Вместо этого здесь имеет место её обобщение на случай искривлённого пространства, схематически показанное на рис. 3.2 в. {16}

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже