Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Физики подметили закономерность в свойствах этих частиц (см. табл. 1.1). Частицы материи чётко разделяются на три группы, которые часто называют семействами. Каждое семейство состоит из двух кварков, электрона или одного из его родственников, и одного из типов нейтрино. Свойства соответствующих частиц в трёх семействах идентичны за исключением массы, которая последовательно увеличивается в каждом следующем семействе. В настоящее время физики исследуют структуру вещества в масштабах порядка одной миллиардной от одной миллиардной доли метра; при этом показано, что всёвещество, найденное по сей день — естественное или полученное искусственно при помощи гигантских устройств для столкновения атомов — состоит из комбинаций частиц, входящих в эти семейства, и соответствующих им античастиц.

Таблица 1.1.Три семейства фундаментальных частиц и массы частиц (в долях массы протона). Значения масс нейтрино до сих пор не удалось определить экспериментально

Семейство 1Семейство 2Семейство 3
ЧастицаМассаЧастицаМассаЧастицаМасса
Электрон0,00054Мюон0,11Тау1,9
Электронное нейтрино< 10 -8Мюонное нейтрино< 0,0003Тау-нейтрино< 0,033
u-кварк0,0047c-кварк1,6t-кварк189,0
d-кварк0,0074s-кварк0,16b-кварк5,2

Взгляд на табл. 1.1, несомненно, вызовет у вас ещё большее изумление, чем то, которое испытал Раби при открытии мюона. Разделение на семейства, по крайней мере, вносит какую-то видимость порядка, но при этом возникают многочисленные «почему». Почему требуется так много фундаментальных частиц, особенно если вспомнить, что для подавляющего большинства окружающих нас тел требуются только электроны, u-кварки и d-кварки? Почему семейств три? Почему не одно семейство, или не четыре, или не какое-нибудь другое число? Почему наблюдается такой, на первый взгляд совершенно случайный, разброс значений масс частиц, например, почему масса тау-частицы в 3 520 раз больше массы электрона? Почему масса t-кварка в 40 200 раз больше массы u-кварка? Все эти числа выглядят странно, они кажутся случайными. Являются ли они игрой случая, связаны ли они с каким-то божественным выбором, или эти фундаментальные свойства нашей Вселенной имеют какое-то разумное научное объяснение?

<p>Взаимодействия, или куда делся фотон</p></span><span>

Картина только усложнится, если мы будем рассматривать существующие в природе взаимодействия. В окружающем нас мире полно самых различных способов оказания воздействий: бейсбольные биты бьют по мячам, энтузиасты банги (прыжков с привязанным к ногам канатом) бросаются вниз с вышек, магниты позволяют сверхскоростным поездам парить над металлическими рельсами, счётчики Гейгера издают щелчки в присутствии радиоактивных материалов, атомные бомбы могут взрываться. Мы можем воздействовать на тела, толкая, дёргая или тряся их, бросая или стреляя в них другими телами; вытягивая, закручивая или сдавливая их, а также нагревая, охлаждая или поджигая. В течение последнего столетия физики накопили огромное количество доказательств того, что все эти взаимодействия между различными телами и материалами, а также миллионы миллионов других происходящих ежедневно взаимодействий могут быть сведены к сочетаниям четырёх основных типов. Одним из них является гравитационноевзаимодействие. Три других — это электромагнитное, слабое и сильное взаимодействия.

Гравитационное взаимодействие наиболее привычно для нас — благодаря ему наша планета удерживается на орбите, вращаясь вокруг Солнца, а наши ноги твёрдо стоят на земле. Масса тела является мерой влияния, которое оказывают на него гравитационные силы, а также мерой гравитационных сил, создаваемых самим телом. Следующим хорошо известным видом взаимодействия являются электромагнитные силы. Этим силам мы обязаны комфортом современной жизни, они используются в электрическом освещении, компьютерах, телевидении, телефонах; кроме того, они лежат в основе устрашающей мощи грозы и нежного прикосновения человеческой руки. На микроскопическом уровне электрический заряд частиц играет ту же роль, что и масса для гравитационного взаимодействия: он определяет величину электромагнитного воздействия частицы и её отклик на электромагнитное воздействие со стороны других частиц.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже