Для кардинальных переходов с разрывом пространства и для переходов от одной из пяти формулировок теории струн к другой (см. главу 12) умышленно использовалась одна и та же аналогия с водой, так как эти переходы тесно связаны. Вспомним (см. рис. 12.11), что пять теорий струн дуальны друг другу и, следовательно, объединены под эгидой охватывающей их единой теории.
Но сохранится ли возможность непрерывного перехода от одного описания к другому, т. е. возможность попасть в любую точку карты рис. 12.11 из любой другой, и после того, как мы будем свертывать лишние измерения в разные многообразия Калаби-Яу? До открытия переходов с кардинальным изменением топологии ожидаемый ответ был отрицательным, так как до этого открытия не было известно, как деформировать одно многообразие Калаби-Яу в другое. Однако сейчас мы видим, что ответ положительный. Путем физически допустимых конифолдных переходов с разрывом пространства можно непрерывно преобразовать любое заданное многообразие Калаби-Яу в любое другое. Все струнные модели, полученные изменениями константы связи и геометрии пространства Калаби-Яу, будут разными фазами единой теории. Целостность схемы рис. 12.11 сохранится даже после сворачивания всех дополнительных измерений.
Многие годы самые лучшие специалисты в области теоретической физики рассуждали о возможности процессов с разрывом пространства и о связи между черными дырами и элементарными частицами. Хотя ранее такие рассуждения могли казаться научной фантастикой, открытие теории струн, в результате которого стало возможным объединение общей теории относительности и квантовой теории, позволило уверенно выдвинуть эти вопросы на передний край современной науки. Успехи теории струн вдохновляют на исследование вопроса о том, не могут ли и другие таинственные свойства Вселенной, десятилетиями не поддававшиеся решению, уступить натиску всемогущей теории струн? Важнейшим из этих свойств является энтропия черной дыры. Именно в области изучения энтропии черной дыры теория струн наиболее выразительно продемонстрировала свою гибкость и дала возможность разрешить важнейшую проблему, поставленную еще четверть века назад.
Энтропия — это мера беспорядка или хаотичности. Например, если рабочее место завалено открытыми книгами, недочитанными статьями, старыми газетами и еше не попавшими в мусорное ведро рекламными проспектами, то степень его беспорядка велика, и оно имеет высокую энтропию. И наоборот, если статьи рассортированы по темам в разные папки, газеты аккуратно разложены по номерам, книги расставлены по алфавиту, а все ручки и карандаши стоят в своих подставках, то рабочее место находится в хорошем порядке, и имеет низкую энтропию. Этот пример иллюстрирует суть понятия энтропии, однако ученые дали ей строгое количественное определение, позволяющее описывать энтропию тел с помощью численных значений. Чем больше численное значение, тем больше энтропия, и наоборот. Хотя подробности вычислений не очень просты, это число, грубо говоря, равно числу всевозможных перегруппировок элементов данной физической системы, при которых ее общий вид не изменяется. Если рабочее место прибрано, то почти всякая перестановка — изменение порядка газет, книг, статей, или перемещение ручки из держателя на стол — приведет к нарушению порядка. С другой стороны, если на рабочем месте беспорядок, то при множестве вариантов перекладываний газет, статей и т.д. беспорядок так и останется беспорядком, и общий вид рабочего места не изменится. Поэтому в последнем случае энтропия велика.
Конечно, примеру перегруппировки предметов на рабочем месте с его нечетким определением того, какие именно перегруппировки «не изменяют общий вид», не достает научной точности. На самом деле, в строгом определении энтропии рассматриваются микроскопические квантово-механические параметры, описывающие элементарные физические составные части системы, и для этих параметров вычисляется число возможных перегруппировок, при которых итоговые макроскопические параметры (например, энергия или температура) не изменяются. Детали несущественны, если понятен факт, что квантово-механическая энтропия является строгим понятием, позволяющим точно измерять общий беспорядок в физических системах.