В момент, когда писалась эта глава, у физиков не было единодушного мнения по данному вопросу. Многие годы Хокинг настойчиво утверждал, что информация не восстанавливается: черные дыры разрушают ее, «вводя новый уровень неопределенности в физику, усугубляющий общеизвестную неопределенность в квантовой теории»9). Хокинг и Кип Торн из Калифорнийского технологического института даже поспорили с Джоном Прескиллом из того же института о том, что произойдет с информацией, захваченной черной дырой. Хокинг и Торн ставили на то, что информация будет потеряна, а Прескилл — на то, что информация восстановится при излучении и уменьшении черной дыры. Угадайте, на что они спорили? На саму информацию: «Проигравший(е) обязуется приобрести для победителя(ей) энциклопедию на выбор победителя (ей)».
И хотя спор все еще не разрешен, недавно Хокинг признал, что в свете обсуждавшегося нового понимания черных дыр в теории струн может существовать способ восстановления информации10). Идея состоит в том, что для типов черных дыр, изученных Строминджером и Вафой (а также многими физиками, вовлеченными в подобные исследования их статьей), информацию можно хранить в компонентных бранах, а затем извлекать из них. По выражению Строминджера, этот результат «возбудил у некоторых теоретиков желание заявить о победе, о том, что при испарении черных дыр информация восстанавливается. По-моему, этот вывод является преждевременным, и предстоит сделать еще немало, чтобы определить, правильный он или нет»11). Так же считает и Вафа, заявляя, что он «в этом вопросе агностик: здесь все еще возможен любой исход»12). Ответ на поставленный вопрос является главной задачей текущих исследований. Приведем слова Хокинга: «Большинство физиков хотят верить, что информация не теряется, так как в этом случае мир будет надежным и предсказуемым. Но я считаю, что если принимать эйнштейновскую теорию относительности всерьез, придется допустить, что пространство-время может само связываться в узлы, приводя к потере информации в их складках. Определение того, может ли информация теряться на самом деле, является одним из важнейших вопросов современной теоретической физики»13).
Вторая нераскрытая тайна черных дыр связана с природой пространства-времени в центре черной дыры14). Прямо применяя формулы общей теории относительности, которыми пользовался Шварцшильд еще в 1916 г., можно показать, что огромные масса и энергия, сосредоточенные в черной дыре, приводят к возникновению разрушительных разрывов ткани пространства-времени, в результате которых оно должно будет закручиваться в конфигурацию с бесконечной кривизной, образуя прокол пространства-времени. Один из выводов, которые делали физики из существования таких сингулярностей, состоял в том, что вся материя, пересекающая горизонт событий черной дыры, будет безвозвратно затянута к центру черной дыры, и с этого момента материя перестанет существовать — внутри черной дыры исчезнет само время. Другие физики, долгое время исследовавшие черные дыры с помощью уравнений Эйнштейна, открыли не укладывающуюся в голове возможность того, что черная дыра может быть окном в другую вселенную, связанную с нашей лишь в центре черной дыры. Грубо говоря, там, где останавливаются стрелки часов нашей Вселенной, начинается отсчет времени вселенной, которая прикреплена к нашей.
Некоторые из следствий этой поразительной перспективы будут рассмотрены в следующей главе, здесь же хочется отметить один важный момент. Нужно вспомнить главный вывод: в экстремальных ситуациях, возникающих при чрезвычайно высоких плотностях ввиду огромных масс и малых размеров, классическая теория Эйнштейна становится неприменимой, и для описания таких ситуаций необходимо ее квантовое обобщение. Здесь напрашивается вопрос о том, может ли для анализа сингулярностей в центре черной дыры оказаться полезной теория струн? Этот вопрос в настоящее время интенсивно исследуется, но из-за возникшей проблемы потери информации он все еще не решен. Теория струн ловко расправляется с множеством сингулярностей других типов, возникающих, например, при разрывах пространства, которые обсуждались в главе 11 и в начале этой главы15'. Но если обнаружен один тип сингулярности, это не значит, что все остальные будут иметь тот же характер. Структура пространства может рваться, прокалываться и раздираться многими разными способами. Теория струн дала нам глубокое понимание одних типов сингулярностей, но другие, среди которых и сингулярности черной дыры, до сих пор не поддаются теоретическому описанию. И снова, главная причина этого — невозможность выхода за рамки теории возмущений, которая, в данном случае, затрудняет проведение всестороннего и достоверного анализа того, что происходит внутри черной дыры.