Видно, что двумерная мембрана может обернуться вокруг двумерной сферы (которая сама покоится внутри пространства Калаби — Яу, находящегося в некоторой точке пространства развёрнутых измерений). Некто, наблюдающий эту точку сквозь развёрнутые измерения, почувствует брану по её массе и заряду, и, как показали Хоровиц и Строминджер, судя по этим характеристикам, сможет сделать вывод, что перед ним чёрная дыра. Кроме того, в основополагающей работе 1995 г. Строминджер показал, что масса 3-браны, т. е. масса чёрной дыры, пропорциональна объёму трёхмерной сферы, которую она обёртывает. Чем больше объём сферы, тем больше должна быть обёртывающая её 3-брана, и тем больше её масса. Аналогично, чем меньше объём сферы, тем меньше масса обёртывающей её 3-браны. По мере сжатия сферы обёртывающая её 3-брана, которая выглядит, как чёрная дыра, становится легче. В момент, когда трёхмерная сфера стягивается в точку, соответствующая чёрная дыра (соберитесь с духом!) становится безмассовой. На первый взгляд, это совершенно непостижимо (что это ещё за
Во-вторых, напомним, что, как обсуждалось в главе 9, число отверстий многообразия Калаби — Яу определяет число низкоэнергетических (а, следовательно, имеющих малую массу) колебательных мод струны, которыми могут описываться перечисленные в табл. 1.1 частицы, а также типы взаимодействий. Но так как при конифолдных переходах с разрывом пространства число отверстий меняется (например, как на рис. 13.3, где отверстие тора исчезло в процессе разрыва/восстановления), можно ожидать и изменения числа колебательных мод малой массы. Действительно, после того, как Моррисон, Строминджер и я тщательно изучили этот вопрос, мы обнаружили, что при замещении сжимающейся трёхмерной сферы в свёрнутых измерениях Калаби — Яу двумерной сферой число безмассовых колебательных мод струны возрастает ровно на единицу. (Пример, приведённый на рис. 13.3, где баранка превращается в мяч, может создать ложную иллюзию, что число отверстий, а, следовательно, и число мод, уменьшается. На самом деле, это артефакт маломерной аналогии.)
Чтобы связать идеи, описанные в двух предыдущих параграфах, представим себе последовательность снимков пространства Калаби — Яу при постепенном уменьшении размеров некоторой сидящей внутри трёхмерной сферы. Из первой идеи следует, что масса 3-браны, обёртывающей трёхмерную сферу и кажущейся нам чёрной дырой, будет уменьшаться и станет равной нулю в момент коллапса. Теперь, пользуясь второй идеей, мы можем ответить на поставленный выше вопрос о том, что означает обращение массы в ноль. Согласно нашей работе, новая безмассовая колебательная мода струны, возникающая при конифолдном переходе с разрывом пространства,