Представим себе две частицы, которые катятся по одномерной линии, подобной пространственному измерению Линляндии. За исключением случая, когда их скорости равны, рано или поздно одна из частиц догонит другую, и они столкнутся. Заметим, однако, что если те же точечные частицы будут двигаться по двумерной поверхности, весьма вероятно, что столкновение никогда не произойдёт. Второе пространственное измерение открывает окно в новый мир траекторий каждой частицы, и большинство траекторий двух миров не пересекаются в одной и той же точке в один момент времени. В трёх, четырёх или большем числе измерений становится всё менее вероятно, что частицы когда-либо столкнутся. Бранденбергер и Вафа поняли, что аналогичное утверждение справедливо, если заменить точечные частицы струнными петлями, намотанными вокруг пространственных измерений. И хотя их вывод гораздо сложнее представить себе наглядно, но в
Вырисовывается следующая картина. В первый момент существования Вселенной в неразберихе высоких, но конечных температур все циклические измерения пытаются расшириться. Намотанные струны их сдерживают в границах исходных планковских размеров. Однако рано или поздно случайная температурная флуктуация приведёт к тому, что три из этих измерений станут больше других и, согласно нашему обсуждению, вероятность столкновения намотанных вокруг этих измерений струн резко увеличится. Примерно в половине этих столкновений будут участвовать пары струна/антиструна, и такие пары аннигилируют, значительно ослабляя сдерживающую силу и позволяя этим трём измерениям расширяться всё больше. А чем больше они расширяются, тем менее вероятно, что их обмотают другие струны, так как для этого от струн будет требоваться всё больше энергии. Таким образом, расширение подстёгивается само собой, и при увеличении размеров становится всё меньше препятствий к дальнейшему расширению. Теперь мы можем представить, что эти три пространственных измерения будут эволюционировать по описанному выше сценарию и достигнут размеров наблюдаемой Вселенной.
Космология и вид пространств Калаби — Яу
Для простоты Бранденбергер и Вафа считали все пространственные измерения циклическими. Это допущение оправдано. Как отмечалось в главе 8, если циклические измерения достаточно велики и замыкаются на себя за границами современных возможностей наблюдения, циклической вид совместим с видом наблюдаемой нами Вселенной. Но для измерений, размер которых остаётся малым, более реалистичный исход заключается в их свёртывании в более сложное пространство Калаби — Яу. Ключевой вопрос, безусловно, в том, в какое именно пространство. Каким образом осуществляется выбор конкретного пространства? Никому не удалось пока что на это ответить. Однако, объединяя результаты об изменении топологии, описанные в предыдущей главе, с подобными космологическими прозрениями, можно предложить схему ответа на данный вопрос. Мы знаем, что многообразия Калаби — Яу можно связать друг с другом посредством конифолдных переходов с разрывом пространства. Можно представить себе, что в моменты хаоса и огромных температур после Большого взрыва свёрнутые компоненты пространства Калаби — Яу остаются малыми, но участвуют в безумном карнавале стремительных превращений, принимая облик различных пространств Калаби — Яу в процессе беспрестанных разрывов и восстановлений ткани пространства. По мере того как Вселенная охлаждается, а три измерения становятся всё больше, переходы от одного пространства Калаби — Яу к другому происходят реже и дополнительные измерения в конце концов упаковываются в определённое многообразие Калаби — Яу, предположительно ответственное за физические свойства наблюдаемого нами мира. Дело чести для физиков — подробно описать эволюцию компоненты Калаби — Яу нашего пространства, чтобы современный её вид можно было вывести из теоретических принципов. Мы видим, что с учётом новых результатов о возможности непрерывного преобразования пространств Калаби — Яу друг в друга выбор одного многообразия Калаби — Яу из множества других может, на самом деле, быть сведён к задаче из космологии.{102}
До начала?