– Они все сопротивлялись, но в разной степени. Лучше всех проводили ток серебро и медь, заметно хуже – железо и олово. А ртуть пропускала через себя ток ещё хуже железа.
Ом вывел закон, который связал силу батареи Вольты, величину тока в цепи и величину электросопротивления элементов цепи. В честь Ома электросопротивление сейчас измеряется в омах, а его закон стал знаменитым законом Ома.
Дальнейшие эксперименты показали, что при нагревании металла его сопротивление немного возрастает, а при охлаждении – уменьшается. В те времена ток рассматривался как течение некой электрической жидкости, поэтому существовало мнение, что сопротивление металлов при очень низких температурах перестанет падать и начнёт быстро расти – потому что электрическая жидкость застынет и остановится.
– Как река, замёрзшая в своих берегах! – воскликнула Галатея.
– Да. Самые низкие температуры, которые возможны в природе, – это минус 273,15 градуса Цельсия…
– А почему нельзя охладить металл до минус трёхсот градусов? – удивилась и даже слегка обиделась девочка.
– Потому что температура минус 273,15 градуса Цельсия соответствует полной остановке теплового движения атомов и молекул. Это абсолютный ноль по шкале Кельвина, соответствующий абсолютному покою. Дальше останавливать уже нечего!
Но приблизиться к этому абсолютному нулю долго не удавалось – пока проблемой получения сверхнизких температур не занялся профессор Камерлинг-Оннес. В 1894 году он создал очень эффективную установку по производству жидкого азота, дающую в час четыре литра этой ужасно холодной жидкости, и стал директором им же организованной Лейденской криогенной лаборатории. В 1908 году Камерлинг-Оннес превратил гелий в жидкость и достиг температуры всего в 0,9 градуса Кельвина или минус 272,25 градуса по Цельсию. За это профессор получил от коллег почетный титул «Господин Абсолютного Нуля». Профессор составил обширную программу исследования свойств различных веществ при таких низких температурах, к которой и приступил с помощью двух ассистентов – Корнелиса Дорсмана и Гиллеса Хольста.
8 апреля 1911 года Камерлинг-Оннес, взбудораженный сообщением помощников, пришёл в свою лабораторию – и убедился, что опыт поставлен полностью в соответствии с его указаниями: ртуть, замороженная до твёрдого состояния и охлаждённая до 3 градусов Кельвина, была присоединена к гальванометру для измерения её сопротивления. И гальванометр показывал… отсутствие всякого сопротивления столь холодной ртути!
– Это действительно странно, – согласился Андрей. – Словно речка, которая в самый сильный мороз взяла растаяла – и быстро побежала по руслу.
Дзинтара кивнула:
– Верно. Это совершенно противоречило представлениям о природе электрического тока при низких температурах.
Поставив серию опытов, Камерлинг-Оннес убедился, что электросопротивление ртути с понижением температуры падало сначала медленно, а потом – при 4,2 градуса Кельвина – скачком рушилось до нуля. Абсолютно неожиданный результат!
– Зато закономерный! – отметил Андрей. – Ведь профессор создал лучшую в мире лабораторию низких температур и методично исследовал физические свойства веществ при сверхнизких температурах. Он должен был наткнуться на это свойство сильно охлаждённых металлов…
– …которое стали называть сверхпроводимостью! – кивнула Дзинтара.
– Весть о таком странном свойстве металлов мгновенно облетела всё научное сообщество – и уже через два года профессор Камерлинг-Оннес получил за своё открытие Нобелевскую премию. Он стал знаменит, в его честь назван лунный кратер диаметром в 66 км, а также специальная медаль и премия.
А мировое сообщество криогенщиков, физиков и химиков стало ломать головы сразу над двумя проблемами. Экспериментаторы кинулись искать: какие ещё металлы и вещества проявляют сверхпроводимость? И нельзя ли получить сверхпроводящие материалы при обычной температуре, не охлаждая их до почти абсолютного нуля? Это стало бы революцией в электротехнике!
Вторая проблема встала перед теоретиками: она заключалась в том, что никто не понимал – как металл может идеально проводить электрический ток? Как возникает электросопротивление в обычном металле, который имеет довольно много практически свободных электронов? Свободные электроны, толкаемые электрическим полем, движутся среди атомов, сталкиваются с ними и теряют скорость, одновременно раскачивая атомы, то есть нагревая вещество. Эти столкновения электронов с атомами и являются источником электрического сопротивления. Но почему при низких температурах эти столкновения или исчезают, или перестают тормозить электроны?
Первыми достигли успеха экспериментаторы: в 1912 году они выяснили, что в сверхпроводящее состояние могут переходить свинец и олово, причем свинец переходил в сверхпроводящее состояние при 7,3 градуса Кельвина – заметно большей температуре, чем олово или ртуть.
Рекордсменом среди чистых металлов оказался ниобий, который становился сверхпроводящим при 9,2 градуса Кельвина. Дальше пришлось рассматривать сплавы и соединения.