Чтобы лучше понять баланс двух сил – электростатической и ядерной, представьте себе кратер глубиной в километр – он будет аналогом потенциальной ямы ядерного притяжения – вокруг которого существует пологий вал выброшенного вещества, который будет аналогом электростатического отталкивания. Этот вал – невысокий, как холм, но если нам нужно закатить на этот холм тяжёлый шар, то придётся потрудиться. А вот с вершины вала шар сам покатится внутрь глубокого кратера, где будет сталкиваться с другими шарами и производить сильный шум – то есть испускать сильные звуковые волны, которые в нашем примере будут аналогами гамма-квантов.
– А как Солнцу удаётся преодолеть электростатическое отталкивание протонов и запустить термоядерную реакцию? – спросил Андрей.
– Солнцу помогает его огромная масса и размер: благодаря им в центре Солнца достигается огромная температура и давление. Для термоядерной реакции в дейтериево-тритиевой смеси должен выполняться так называемый критерий Лоусона: если взять и перемножить количество протонов в кубическом сантиметре на время удержания плазмы в секундах, то термоядерная реакция начнется, когда это произведение будет больше десяти в 14-й степени.
– Это сколько будет в миллиардах? – спросила Галатея.
– Это будет сто тысяч миллиардов. Критерий Лоусона говорит, что для реакции вы должны создать очень плотную и горячую плазму – или плотную и очень горячую. На Земле создать солнечное давление и температуру очень непросто. Пытаться сжимать горячую плазму – это как воздушный шарик в ладонях сжимать – он где-нибудь да вылезет маленьким пузырём. Для сжатия плазмы и удержания её в нагретом состоянии пришлось создавать специальные установки, которые должны были повторить условия на Солнце, но в сравнительно компактном объёме.
Самым перспективным термоядерным реактором оказался токамак.
Что такое токамак? Давайте рассмотрим молнию: она возникает, когда электрическая искра пробивает атмосферную толщу от земли до облака. Эта искра ионизирует воздух, создавая воздушный канал с повышенной проводимостью. По этому каналу немедленно устремляется избыток электронов, то есть у нас в воздухе возникает раскалённый шнур, по которому мчится лавина электронов. Температура внутри молнии более 20 тысяч градусов. Вокруг шнура закручивается магнитное поле, которое не даёт электронам и ионам разбредаться: оно сжимает их в тонкий жгут. Молния выполняет свою задачу по выравниванию электрических зарядов облака и земли; одновременно разогретый воздух канала расширяется и вызывает мощные звуковые волны – то есть гром, который всегда слышен после молнии, потому что звук движется медленнее света.
Теперь возьмём этот плазменный шнур молнии и свернём его в кольцо, чтобы ток не кончался, а всё время тёк по замкнутому кольцу, создавая одновременно магнитное поле, стабилизирующее кольцо.
– Так, значит, учёные решили свернуть электрического дракона в бараний рог? – покачала головой Галатея. – Смело!
– Токамак представляет собой такую свёрнутую в кольцо молнию, которая дополнительно стабилизируется мощным внешним магнитным полем, порождённым сверхпроводящими магнитами.
Токамак был придуман в 1950 году. А началась эта история в 1942 году, во время тяжёлой войны. Несмотря ни на что, университеты продолжали работать, а студенты – сдавать экзамены.
Однажды известный физик Игорь Тамм и его не менее известный коллега Михаил Леонтович принимали выпускные экзамены в Московском государственном университете. В экзаменационную аудиторию нескладной походкой зашёл высокий и худой юноша и тихим голосом представился:
– Андрей Сахаров.
Тамм и Леонтович стали экзаменовать студента по теории относительности. Андрей Сахаров отвечал, но его ответы совсем не следовали учебнику и были какими-то не очень вразумительными. Преподаватели пожали плечами, поставили студенту тройку – и отпустили.
Ночью Тамм позвонил Леонтовичу и сказал:
– Слушай, ведь этот студент всё правильно говорил! Это мы с тобой ничего не поняли – и это нам надо тройки ставить! Нужно с ним ещё поговорить.
Так Андрей Сахаров стал учеником Игоря Тамма.
В 1950 году они выдвинули идею термоядерного реактора, в котором плазма сохранялась бы в магнитной ловушке…
– Как джинн в бутылке! – воскликнула Галатея.
– Да, только плазму оказалось легче согнуть в кольцо, чем загнать в бутылку. Так возникла идея ловушки-бублика, или тора.
Вариантов работы термоядерных реакторов было придумано предостаточно: быстрый пинч-разряд в плазме; ловушки с плазменным шнуром в виде восьмёрки; плазма в шаре с микроволновым излучением; испарение маленького шарика с дейтериево-тритиевой смесью, размещённого в фокусе нескольких мощных лазеров.
Но токамак оказался самым надёжным вариантом постоянно работающей машины, поэтому по всему миру возникло множество токамаков в различных вариантах. Эти устройства помогли учёным достичь важного прогресса. Например, в 1997 году европейский токамак получил 16 мегаватт полезной энергии.
Как показали опыты, чем больше токамак, тем легче на нём достичь критерия Лоусона…