Читаем Электричество шаг за шагом полностью

Т-124. Для того чтобы оценить работоспособность переменного тока в среднем за длительное время, для него придумана характеристика «эффективное значение». Есть довольно простой способ судить о том, что может сделать переменный ток не в какой-то «данный момент», не в моменты своего регулярно повторяющегося рекорда (амплитуда), а в среднем за длительное время. Для этого удобно сравнить действие данного переменного тока с действием постоянного тока. Пропустим, например, через лампочку переменный ток и через такую же точно лампочку пропустим постоянный ток. Подберём величину этого постоянного тока так, чтобы обе лампочки светились одинаково, это означает, что оба тока — постоянный и переменный — производят одинаковую работу. Величину постоянного тока, который по своей работоспособности эквивалентен какому-то определённому переменному току, называют эффективным значением этого переменного тока. Точно так же эффективное значение переменного напряжения (э.д.с.) — это некое постоянное напряжение (э.д.с.) с такой же работоспособностью, эквивалент данного переменного тока, как говорится, по деловым качествам.



ВК-151.Генератор тока» и «генератор напряжения» — это два генератора со своими особенностями схемы. У первого внутреннее сопротивление намного меньше, чем у предполагаемой нагрузки, у второго намного больше. Поэтому к генератору напряжения можно подключать разную нагрузку и получать одинаковое напряжение. Аналогично генератор тока при нагрузке с разным сопротивлением создаст одинаковый ток.


При прочих равных условиях эффективный ток (э.д.с., напряжение) тем больше, чем больше амплитуда переменного. А иначе и быть не может — атлет, который на соревнованиях поднял штангу в 200 килограммов, за день наверняка сумеет перенести больше грузов, чем малыш, личный рекорд которого — табуретка. Для переменной э.д.с. (напряжения, тока), которая наводится во вращающейся рамке, существует такое соотношение: эффективное значение составляет примерно 0,7 (то есть 70 %) от амплитуды, а амплитуда, соответственно, в 1,4 раза (на 40 %) больше эффективного значения (Р-59). Эти же соотношения действительны и для обычного сетевого напряжения, которое, в частности, поступает в наши дома. Так, например, в сети с переменным напряжением 127 В (для напряжения сети, так же как для всех электроприборов, всегда указывают именно эффективное напряжение) амплитуда составляет 127 В 1,4 = 180 В, а в сети 220 В амплитуда напряжения 220 В -1,4 = 308 В.

Ещё раз отметим: для всех электрических приборов и аппаратов — от утюга до мощного электродвигателя — в инструкциях, техническом паспорте, на корпусе самого прибора указывают именно эффективное напряжение, которое нужно для нормальной работы. Так, если на лампочке или возле сетевого разъёма электробритвы написано 220 В, то имеется в виду именно эффективное напряжение. Однако и про амплитуду иногда вспоминать необходимо — как-никак она почти в полтора раза больше эффективного напряжения или эффективного тока. И когда, например, вы хотите включить в цепь переменного тока конденсатор, то нужно следить, чтобы амплитуда напряжения на этом конденсаторе не превысила допустимое для него рабочее напряжение. Точно так же именно амплитуду напряжения нужно иметь в виду, сверяясь с правилами электрической безопасности (Т-10).



ВК-152.В районе температуры жидкого гелия (около 4 градусов Кельвина, или минус 269 градусов Цельсия) некоторые металлы и сплавы полностью теряют своё электрическое сопротивление, становятся сверхпроводниками. Подобное охлаждение пока настолько дорого, что сверхпроводники используют лишь в исключительных случаях, например в больших ускорителях. При этом проводят предварительное охлаждение до минус 77 градусов Цельсия в значительно более дешёвом жидком азоте.


Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука