Читаем Электричество шаг за шагом полностью

Это характерно для многих, а может быть, даже для всех областей техники, но особо заметно там, где работает электричество. Гигантские машины, многотонные агрегаты, сложнейшие системы начинались с простейших опытов, с маленького приборчика, наконец-то ожившего на столе счастливого изобретателя. Катушка медного провода, возле которой Фарадей быстро перемещал магнит, превратилась в мощный электрогенератор, одна такая машина может накормить электричеством целый город. С небольших моторчиков, послабее, чем у нынешней электробритвы, начинались мощные ходовые двигатели большого авианосца или электровоза. Но такие превращения, конечно же, не происходили сами собой. И вполне объяснимо, что некоторые учебные книги знакомят своих читателей с современными достижениями электрической техники, начиная с известных уже много лет простых схем и процессов. Именно с них начинается путь к пониманию нынешних электрических шедевров.

Т-157. Трансформатор передаёт энергию из одной электрической цепи в другую без непосредственного контакта между ними. Используя явление взаимоиндукции (Р-74), можно передавать электрическую энергию из одной цепи в другую без непосредственного контакта между ними, то есть не соединяя их проводниками. Устройство, которое осуществляет такую передачу, это и есть трансформатор, в переводе с латыни — «преобразователь».

В простейшем случае трансформатор — это две обмотки, связанные общим магнитным потоком Ф (Р-76). В некоторых трансформаторах, главным образом высокочастотных (частота переменного тока сотни килогерц и выше), магнитный поток замыкается по воздуху. В низкочастотных трансформаторах (частота десятки и сотни герц, в том числе промышленная частота 50 герц) магнитный поток проходит через стальной или прессованный ферромагнитный сердечник — стержневой, замкнутый п-образный, ш-образный или кольцевой (Р-47). В трансформаторах часто бывает несколько обмоток, к одной обмотке (её называют первичной) подводится электрическая энергия от генератора, а с других обмоток (вторичных) энергия передаётся разным потребителям.

Коротко о сердечниках. Сердечники делают из стали, а иногда из пермаллоя, ферромагнитного материала, более дорогого, но со значительно большей магнитной проницаемостью (Р-46). Сердечники, как правило, собраны из пластин или свиты из тонкой ленты (Р-77).

В самом сердечнике, как в любой вторичной обмотке, тоже наводится ток, и, если не принять мер, этот ток окажется весьма большим, сердечник будет отбирать у трансформатора и превращать в тепло немало энергии. Более того, массивный сердечник ведёт себя как короткозамкнутый виток, обмотка с малым сопротивлением, в которой, как мы увидим чуть дальше, возникает большой ток. Из-за этого массивный сердечник будет сильно греться, нагревая весь трансформатор и создавая тем самым угрозу его нормальной работе.

С учётом всего этого сердечник трансформатора собирают из тонких стальных пластин, между которыми находится тонкий слой электрической изоляции, например, лаковое покрытие. Поэтому пластины электрически изолированы одна от другой, и в каждой наводится свой собственный ток. При этом токи в соседних пластинах сердечника создают магнитные поля, которые действуют друг против друга, в итоге общая мощность, пожираемая сердечником (Т-8), резко уменьшается, и предотвращается его нагрев.



Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука