Читаем Электричество шаг за шагом полностью

Р-5. ПЛАНЕТАРНАЯ МОДЕЛЬ ПОЯСНЯЕТ, КАК СТРОЯТСЯ СТО РАЗНЫХ АТОМОВ ИЗ ТРЁХ ЧАСТИЦ. Сказанное в пояснениях к рисунку Р-4 наверняка вызвало удивление: как это так миллионы веществ собраны всего из трёх разных частиц? В чём секрет такого фантастического многообразия при столь малом количестве (всего три!!!) исходных деталей?

Начнём с того, что протон, нейтрон и электрон участвуют в создании разных веществ не индивидуально, не по одному, а в составе разных строительных блоков — атомов. Атом устроен и работает несравнимо сложнее, чем это показано в его планетарной модели (2), но именно этой моделью атома мы будем пользоваться в книжке. Хотя бы потому, что изучение истинного устройства атома и протекающих в нём процессов потребует во много раз больше времени, чем вся наша образовательная кампания по знакомству с электричеством.

Самый наглядный вариант планетарной модели — рука, раскручивающая привязанный на крепкой нитке спичечный коробок (1). В простейшем случае (в атоме водорода) на месте руки будет атомное ядро с одним протоном, а вместо спичечного коробка — один электрон. В более сложных атомах протонов в ядре больше, и столько же электронов на круговых орбитах вокруг ядра (2). Подобная модель названа планетарной потому, что она напоминает схему движения планет вокруг Солнца (3). Возможны достаточно прочные, устойчивые атомы, в ядре которых до ста протонов (+) и на орбитах столько же электронов (—). Благодаря равенству положительных (протоны) и отрицательных (электроны) электрических зарядов вещество, состоящее из таких атомов, не демонстрирует каких-либо явных электрических свойств. Так же как не натёртая пластмасса или не натёртое стекло (Р-1).


А потом в мире атомов открыли ещё одно фундаментальное свойство материи, ещё один вид особых сил — их назвали слабыми ядерными силами, хотя действуют эти слабые силы во много раз сильнее, чем гравитация.

Вот так-то… Всё было просто, была известна одна гравитация, а теперь вон сколько открылось важнейших сил, действующих в нашем мире и полученных в наследство от Большого взрыва. Так что мир наш намного сложней, чем кажется человеку, который, подобно своему доисторическому предку, видит лишь то, что видно с первого взгляда.

Гравитацию, электричество, магнетизм, сильные и слабые силы называют основными, фундаментальными силами природы. Они, если разобраться, в итоге приводят в действие всё, что происходит: вращение планет, химические реакции, тепловые процессы, взрыв атомной бомбы, падение метеорита, считывание любимой мелодии с магнитофонной кассеты.

Здесь самое время заметить, что современная физика пытается увидеть более простую картину. Теоретики ищут возможность поддержать представление о единой природе, о «великом объединении» всех известных сил — сильных, слабых, магнитных, электрических и гравитационных. Один из фрагментов такого объединения обнаружился ещё двести лет назад: оказалось, что электричество и магнетизм не две отдельные, независимые силы — это просто два разных проявления единого электромагнитного процесса. А сравнительно недавно эксперименты подтвердили теорию, объединившую электромагнитные и слабые ядерные силы в едином, как его называют, электрослабом взаимодействии.

Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука