Читаем Электричество шаг за шагом полностью

Р-16. ПОЛЕЗНЫЙ ОБМАН — НАПОМИНАНИЕ ОБ УДАРЕ. Многие, возможно, видели, как при ударе большим молотом по куску гранита из него вылетают искры, — это часть энергии удара превращается в тепло и оно накаляет разлетающиеся мельчайшие осколки камня. Примерно так же нагреваются ладони при бурных аплодисментах или пила в результате мелких и частых ударов её зубьев о распиливаемое дерево. И таким же образом электрический ток нагревает металл, по которому он движется, — свободные электроны, включившиеся в этот ток, сталкиваются с неподвижными атомами вещества, в котором он протекает. При этом, конечно, ток пропускают не по меди или алюминию, в которых свободные электроны двигаются легко и почти беспрепятственно. Ток пропускают по металлам, где электроны часто сталкиваются с атомами самого вещества и легко превращают в тепло значительную часть своей энергии. Это, конечно, упрощённая картина, и нужно не забывать об этом упрощении.

Используя металлы, которые не плавятся при достаточно высокой температуре (например, вольфрам плавится при 3380 градусах), и переместив все события в небольшой стеклянный баллон, из которого откачан воздух с его кислородом, или в баллон, который заполнен газом, не допускающим быстрого разрушения металла, создают простейшие электрические лампы, излучающие свет. Тепловое действие тока начали использовать более 200 лет назад, а вот электрическая лампочка появилась ещё лет через 70, ей недавно исполнилось 130 лет.

Электрический ток, если в нём участвуют свободные ионы, может выполнять ещё одну важную работу, именуемую «гальванопластика», — ионы могут переносить вещество, которое они представляют. Так, например, на дешёвом чёрном металле технология гальванопластики создаёт блестящее никелевое или иное декоративное и защитное покрытие.


Чтобы понять, как именно оценивается сила тока в проводнике, попробуйте представить себе, что внутри этого проводника создан своего рода контрольный пункт — проводник как бы перегорожен поперечной сеткой, и автоматы с фотоэлементами считают, сколько зарядов проходит через это поперечное сечение за единицу времени. В металлическом проводнике, в частности, таким способом подсчитывается количество электронов, которые упорядоченно смещаются в одну сторону, от «минуса» к «плюсу». Чем больше электронов проходит через наш условный контрольный пункт за определённое время, тем, следовательно, выше интенсивность их движения, тем больше, тем сильнее ток.

Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука