Тепловой пеленгатор Земли представляет собой своеобразный телескоп (рис. 8), принимающий не видимые, а инфракрасные, т. е. тепловые, лучи и жестко связанный со строительными осями космического аппарата. Сигналы для пеленгации даются с помощью оптической системы, включающей электрический двигатель с зеркалом, вращающимся на его оси, и промежуточную систему зеркал, передающих сигналы на болометр-термоэлемент, воспринимающий тепловые сигналы Земли или другой планеты.
Рис. 8. Приборный узел построителя местной вертикали:
1 — телевизионные датчики; 2 — инфракрасный датчик; 3 — датчик построителя местной вертикали
По изменению интенсивности теплового излучения планеты, воспринимаемого при вращении зеркала, оптическая система с болометром позволяет определять граничный контур планеты в космосе и по этой границе осуществляет пеленгацию. По величине получаемой болометром энергии излучения автоматически (с помощью электронной аппаратуры) определяются угловые отклонения осей космического аппарата от запеленгованного направления, проходящего через центр планеты. Эти отклонения в виде электрических сигналов передаются в систему управления космического летательного аппарата, и с помощью силовых органов управления космический летательный аппарат ориентируется относительно двух осей — оси крена и оси тангажа. Благодаря этому создается следящая система, обеспечивающая ориентацию космического летательного аппарата относительно оси, проходящей через центр масс планеты.
Таковы принципы действия чувствительных приборов для «видимых» ориентиров, спектральные свойства и интенсивность которых могут быть зарегистрированы чувствительными элементами.
Электромеханический гироскоп представляет собой электрический двигатель с ротором, обладающим большим моментом инерции и выполненным в виде маховика. Чтобы обеспечить большую маховую массу ротора, последний конструируют как внешнюю часть электродвигателя. Ротор гироскопа не имеет выходного устройства вала, так как, вращаясь в подшипниках, он работает только на разгон своей массы или на ее торможение. Статор электродвигателя при питании постоянным током имеет систему полюсов машины постоянного тока со щеткодержателями. При питании переменным током статор двигателя-гироскопа является статором обычного двух- или трехфазного электродвигателя.
Рассмотрим некоторые электромеханические характеристики гироскопа на постоянном токе, физически более простые при анализе работы электродвигателей-маховиков для систем ориентации космического летательного аппарата.
Непосредственно после включения такого двигателя в сеть начинается период разгона ротора, в течение которого двигатель потребляет большой ток и развивает большой момент вращения, обеспечивающий этот разгон. По мере разгона ротора и возникновения в его обмотках электродвижущей силы обратного направления, ток при постоянно приложенном напряжении автоматически уменьшается (вместе с моментом вращения) до ничтожной величины, достаточной только для преодоления трения в подшипниках и побочных потерь. При работе ротора гироскопа в глубоком вакууме энергия, подводимая к двигателю, расходуется только на потери в подшипниках и электромагнитные потери в статоре и роторе. В течение последних лет повсеместно в электромеханических гироскопах коллекторные машины постоянного тока были заменены двигателями переменного тока повышенной частоты[2]. Возникающее при этом вращающееся поле разгоняет ротор до допустимого по прочности конструкции числа оборотов, исчисляемого обычно десятками тысяч в минуту.