Полуфантастическая конструкция — электроракетоплан — имеет на своем борту мощную электростанцию, обладающую достаточно малой массой. Энергия от такой электростанции подводится к электрореактивным двигателям, вращающим вертолетный винт огромного диаметра и располагающимся на его трех лопастях вместе с соответствующими запасами излучающей массы. Электрореактивные винты большого диаметра дают очень большую силу тяги на единицу расходуемой мощности, и поэтому такой винт способен в вертикальном режиме поднять летательный аппарат на орбиту вокруг Земли.
По мере набора скорости такой космический аппарат переходит из вертикального режима в режим наклонного полета, и, кроме того, в условиях разреженной воздушной атмосферы увеличивается угловая скорость вращения электрореактивного винта, который продолжает дальше разгонять аппарат до сверхзвуковых скоростей. После получения электропланом необходимой скорости лопасти его электрореактивного винта, до этого работающие в самолетном режиме, поворачиваются вокруг своих продольных осей. Тем самым достигаемая тяга со всех трех лопастей будет создавать общую тягу уже в направлении продольной оси движения электроракетоплана. После выхода на орбиту электроракетоплан способен возвратиться по спиральной кривой опять на Землю в результате гашения своей космической скорости в течение относительно длительного промежутка времени, при котором возникающие тепловые процессы не выводят из строя рабочие элементы электродвигателей.
Общие перспективы развития космических электромеханических систем. Среди научно-прикладных задач, решаемых в современной космонавтике, исключительное значение имеет использование космических средств в интересах народного хозяйства. Речь идет о космических лабораториях, на борту которых в условиях глубокого вакуума и невесомости в будущем будет организовано производство новых материалов: металлов, проводников, полупроводников, а также изоляционных и магнитных материалов. Создаваемые вначале в специальных орбитальных лабораториях, они будут затем производиться в космических мастерских, цехах и даже опытных производствах. Такие лаборатории, мастерские и опытные производства, естественно, должны размещаться в космических кораблях огромного объема и тоннажа, присущих сегодняшним морским кораблям.
Для осуществления всего этого в будущем необходима полная электрификация объектов, существующих ч действующих в космическом пространстве. Так как технической базой электрификации являются средства электротехники, то создание электрифицированных объектов на орбитах планет и на самих планетах является задачей будущей электротехники.
Мы рассмотрели электромеханику как отрасль электротехники применительно к космическим аппаратам и космическим станциям. Эта отрасль науки и техники будет все время развиваться. Электромеханические системы сложных агрегатов для автоматизации и механизации технологических процессов включают целый комплекс электрических машин постоянного и переменного тока с соответствующими электронными блоками и с синтезированными управляющими ЭВМ для решения задач автоматического регулирования и управления этими процессами.
Очевидно, что эти направления развития электромеханики должны быть соответствующим образом учитывать условия космической среды, в которой действуют космические орбитальные станции, а в будущем — условия окружающей среды планет и спутников Солнечной системы.
Как новая зарождающаяся отрасль техники космическая электромеханика будучи синтезом электрических машин, аппаратов, низковольтных систем регулирования, электронной техники, имеет свои внутренние законы, определяющие физические процессы и конструктивные формы этого синтеза. Сейчас, например, создаются целые серии бесколлекторных, бесщеточных машин постоянного тока, в которых коллекторы и щеточные узлы заменяются транзисторными и тиристорными блоками, обеспечивая тем самым их высокую надежность и длительность срока службы, исчисляемую годами.
Такой синтез электронной техники и техники электрических машин и аппаратов накладывает свои особенности на физические процессы, методику расчета, конструктивную компоновку и, следовательно, обеспечивает минимальные весовые, объемные габариты и высокие эксплуатационные характеристики таких электромеханических комплексов.
Особое развитие в космической электромеханике получит метод сращивания мини-ЭВМ непосредственно с обмотками импульсных шаговых электродвигателей. Более того, обычные асинхронные, синхронные, гистерезисные двигатели и бесщеточные двигатели постоянного тока, а также шаговые двигатели будут создаваться со встроенными в конструкциях тахогенераторами и датчиками, определяющими пространственное положение ротора относительно статора и применяемыми в прецизионных следящих системах синхронного движения и синхронного поворота.