Читаем Электроника для начинающих (2-е издание) полностью

Калькулятор подсказывает, что произведение 0,63 на 3,33 составляет около 2,1. А 2,1 плюс 5,67 даст 7,77. Значит, после второй секунды напряжение на конденсаторе будет равно 7,77 В.

Многократно повторив аналогичные вычисления, получим последовательность чисел, подобную приведенной далее (с округлением до сотых). Значения будут соответствовать напряжению на конденсаторе в конце каждой секунды, при условии что напряжение источника питания равно 9 В:

После 1 секунды: 5,67 В

После 2 секунды: 7,77 В

После 3 секунды: 8,54 В

После 4 секунды: 8,83 В

После 5 секунды: 8,94 В

После б секунды: 8,98 В

График на рис. 2.80 был получен путем построения гладкой кривой через эти расчетные точки. Наибольшее значение по оси абсцисс составляет 6 секунд, поскольку при этом напряжение на конденсаторе вплотную приблизилось к 9 В.

Рис. 2.80. График иллюстрирует процесс заряда конденсатора с течением времени

<p>Экспериментальное подтверждение</p>

В предыдущем разделе я рассказал вам, как рассчитать напряжение на конденсаторе при его заряде через резистор. Но как подтвердить, что я прав? Должны ли вы верить мне на слово?

Возможно, вы захотите проверить все самостоятельно. Другими словами, необходимо экспериментальное подтверждение, которое является важной частью процесса «Изучения через открытия».

Вернитесь к нашей предыдущей схеме и убедитесь, что номинал резистора равен 10 кОм, а не 1 кОм. Попросите кого-нибудь сесть рядом с вами, чтобы следить за временем, пока вы наблюдаете за дисплеем вашего мультиметра, показывающим значение в вольтах. Каждые 10 секунд ваш помощник подает команду, и вы в этот момент записываете показания мультиметра. Выполняйте все это в течение минуты.

Поскольку у вас резистор 10 кОм, а не 1 кОм, постоянная времени теперь составляет 10 секунд, а не одну. Поэтому ваши показания должны выглядеть как ряд напряжений, который я привел ранее с интервалами в 1 секунду (см. рис. 2.80), но теперь интервалы будут 10-секундными.

Ваши значения напряжения должны быть близки к моим, но не будут совпадать в точности. Почему? Есть множество причин.

• Ваша батарея не обеспечивает такое же напряжение, что и моя.

• Номинал вашего резистора не равен в точности 10 000 Ом.

• Емкость вашего конденсатора не точно 1000 микрофарад.

• Ваш мультиметр имеет погрешность.

• Вам требуется несколько микросекунд, чтобы снять показания мультиметра.

• Ваш помощник мог давать команду не в точности каждые 10 секунд.

Есть еще два фактора, о которых я не упомянул. Во-первых, конденсаторы сохраняют электрический заряд не идеально. Они обладают утечкой, из-за которой заряд постепенно убывает. Это происходит даже тогда, когда конденсатор набирает заряд. Ближе к концу процесса заряда электроны перетекают так медленно, что утечка (скорость, с которой они уходят обратно) становится существенной в сравнении с зарядкой.

Кроме того, ваш мультиметр имеет некоторое внутреннее сопротивление. Оно очень большое, но все же не бесконечное. Это значит, что мультиметр «крадет» небольшое количество заряда от конденсатора, пока вы измеряете напряжение. Да, сам процесс проведения измерений изменяет значение, которое вы пытаетесь определить! Это, на самом деле, очень распространенная проблема в физике и инженерном деле.

Я могу представить способы минимизации всех перечисленных факторов, но не знаю средства, позволяющего устранить их полностью. Всегда будет присутствовать некоторая экспериментальная погрешность. И ее приходится учитывать, когда вы проводите эксперимент, чтобы подтвердить теорию. Подтверждение может быть очень долгим процессом, требующим значительного терпения – именно поэтому теоретиками являются, как правило, одни люди, а экспериментаторами – совсем другие.

<p>Емкостная связь</p>

Теперь, когда я рассказал вам о том, как конденсаторы заряжаются и разряжаются, вернемся к ранее сделанному утверждению: «конденсатор не пропускает постоянный ток».

Возможно, вы помните, что я также сказал «пока вы подаете на конденсатор неизменный во времени электрический потенциал, это утверждение остается верным».

Но что если этот электрический потенциал будет меняться? Что происходит в тот момент, когда конденсатор переходит из состояния отсутствия заряда к внезапному подключению источника напряжения? Что ж, это совсем другое дело. В этих условиях электрический сигнал способен пройти через конденсатор.

Как такое возможно? Обкладки внутри конденсатора не касаются друг друга, как же тогда электрический импульс может перескочить с одной на другую? Вскоре мы разберемся с «как» и «почему». Но сначала вам необходимо убедиться в том, что описываемое мною происходит на самом деле.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки