Читаем Электроника?.. Нет ничего проще! полностью

Как ты видишь, при подаче в точку А потенциала (который рассматривается как наличие напряжения) транзистор запирается и выходное напряжение S становится равным нулю. В том случае, когда точка А замкнута на корпус (отсутствие напряжения на входе), по включенному в цепь базы резистору сопротивлением 10 ком протекает ток. Если коэффициент усиления этого транзистора по току превышает 10 (а это вполне нормально), то транзистор находится в режиме насыщения, и протекающий ток создаст на его коллекторе (т. е. на выходе S) потенциал, близкий к . Имеется также возможность сделать на транзисторах довольно простые элементы И и ИЛИ.


Объединения логических элементов



Л. — Не беспокойся. Возможности этих элементов становятся большими, стоит только собрать их в достаточном количестве. Чтобы привести пример, построим схему, которая позволит нам складывать двоичные числа. Как ты сам убедился, при сложении двоичных чисел возможны три результата: нуль, если обе цифры равны нулю; единица, если одна из слагаемых цифр единица; нуль (и перенос единицы в следующий разряд), если обе слагаемые цифры единицы.

Мы попробуем так объединить элементы, чтобы полученное устройство давало выходное напряжение при приложении напряжения на один или на другой вход, но не давало при одновременной подаче напряжения на оба входа.

Н. — В этом случае элемент ИЛИ нас не устроит.

Л. — Правильно, одного этого элемента будет недостаточно. Но посмотри на схему, изображенную на рис. 129.



Рис. 129. Объединение логических элементов, носящее название «исключающее ИЛИ» (без выхода R) или полусумматора (с выходом S и R). Устройство дает напряжение на выходе, когда имеется напряжение на входе А или на входе В, но не одновременно на обоих входах.


Напряжения А и В одновременно подаются на элемент ИЛИ (1) и на элемент И (2). Как ты видишь, на выходе элемента И я поместил элемент НЕ (3). На входе этого элемента НЕ я получу единицу. Исключение будет лишь в том случае, если на входе всего устройства одновременно присутствуют напряжения А и В, ибо только при этом условии элемент И (2) дает выходное напряжение.

Н. — До сих пор я все понял без труда.

Л. — Остальное не сложнее. На выходе элемента ИЛИ (1) напряжение будет, когда оно имеется на входе А или на входе В или одновременно на обоих. А теперь посмотри, как ведет себя элемент И (4). Этот элемент не получит напряжения на свой нижний вход только в том случае, когда напряжение подается одновременно на входы А и В всего устройства. Во всех трех других случаях (напряжение в точках А и В равны нулю, напряжение в А равно нулю и присутствует в точке В, напряжение присутствует в А и равно нулю в точке В) на нижний вход элемента И (4) напряжение подается.

Следовательно, этот элемент не пропустит напряжение с выхода элемента 1 только в том случае, когда входное напряжение одновременно подается в точки А и В. Рассмотрев все возможные варианты, ты можешь убедиться, что на выходе S напряжение будет, когда оно подается только в А или только в В, но не одновременно на оба входа.

Н. — Это далеко не так просто, как ты обещал, но все же здесь можно разобраться. Только я не вижу, зачем нужен выход, обозначенный буквой R, который ты сделал после элемента 2.

Л. — Призови на помощь свою память. Незнайкин: она должна подсказать тебе, что при сложении двоичных цифр запоминать единицу для переноса в следующий разряд приходится лишь в том случае, если обе слагаемые цифры равны единице; иначе говоря, выход R служит для запоминания переноса и сигнал на нем появляется в случае наличия напряжения одновременно в точках А и В.

Н. — А не можешь ли ты теперь рассказать мне о больших цифровых электронных вычислительных машинах?



Электрическое представление чисел



Л. — Прежде чем приступить к этому вопросу, я должен в нескольких словах рассказать о методах, используемых для представления чисел в электрической форме. Двоичное число состоит из нескольких нулей или единиц. Предположим, что число состоит из n знаков. Выразить и передать это число в электрической форме можно двумя способами.

Сначала следует сказать о параллельной передаче числа; в этом случае для n знаков используется n проводов, в которые для передачи единицы подается напряжение, а для передачи нуля напряжение не подается, т. е. все знаки поступают одновременно, и для этого проводов требуется по числу знаков.

Второй метод представления носит название метода последовательной передачи числа. Он заключается в передаче по единственному проводу в установленном заранее темпе импульсов или отсутствие этих импульсов, что соответственно и обозначает единицу или нуль. При передаче этим способом числа читаются справа налево.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Москва при Романовых. К 400-летию царской династии Романовых
Москва при Романовых. К 400-летию царской династии Романовых

Впервые за последние сто лет выходит книга, посвященная такой важной теме в истории России, как «Москва и Романовы». Влияние царей и императоров из династии Романовых на развитие Москвы трудно переоценить. В то же время не менее решающую роль сыграла Первопрестольная и в судьбе самих Романовых, став для них, по сути, родовой вотчиной. Здесь родился и венчался на царство первый царь династии – Михаил Федорович, затем его сын Алексей Михайлович, а следом и его венценосные потомки – Федор, Петр, Елизавета, Александр… Все самодержцы Романовы короновались в Москве, а ряд из них нашли здесь свое последнее пристанище.Читатель узнает интереснейшие исторические подробности: как проходило избрание на царство Михаила Федоровича, за что Петр I лишил Москву столичного статуса, как отразилась на Москве просвещенная эпоха Екатерины II, какова была политика Александра I по отношению к Москве в 1812 году, как Николай I пытался затушить оппозиционность Москвы и какими глазами смотрело на город его Третье отделение, как отмечалось 300-летие дома Романовых и т. д.В книге повествуется и о знаковых московских зданиях и достопримечательностях, связанных с династией Романовых, а таковых немало: Успенский собор, Новоспасский монастырь, боярские палаты на Варварке, Триумфальная арка, Храм Христа Спасителя, Московский университет, Большой театр, Благородное собрание, Английский клуб, Николаевский вокзал, Музей изящных искусств имени Александра III, Манеж и многое другое…Книга написана на основе изучения большого числа исторических источников и снабжена именным указателем.Автор – известный писатель и историк Александр Васькин.

Александр Анатольевич Васькин

Биографии и Мемуары / Культурология / Скульптура и архитектура / История / Техника / Архитектура
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута

С помощью книги Андрея Гусарова вы самостоятельно, неторопливо, без экскурсовода прогуляетесь по самым знаковым местам удивительного города на Неве. Издание включает 34 познавательные экскурсии. Начало повествования посвящено биографии основателя города, последнему русскому царю и первому императору России – Петру I. Здесь же дан обзорный географический очерк с указанием административно-территориального деления Санкт-Петербурга. Вас ждет знакомство с неповторимым и блистательным городом. Вы прочтете о важных городских памятниках архитектуры – великих творениях гениальных зодчих, познакомитесь с всемирно известными музеями – собраниями коллекций живописи, графики, бесценных реликвий прошлого… Узнаете, что Северная столица – место всех религий и в ней рядом стоят великолепные здания разных конфессий. Вы посетите зеленые уголки мегаполиса – парки и скверы и символы города – важные памятники. Истории Медного всадника, Румянцевского обелиска и колонны Славы запечатлели в памяти славное прошлое государства Российского…

Андрей Юрьевич Гусаров

Скульптура и архитектура / Техника / Архитектура