Читаем Электроника?.. Нет ничего проще! полностью

Л. — Ты совершенно правильно понял. Как ты видишь, в этом случае роль «двигателя» выполняет отклоняющее действие, которое оказывает на электронный луч выходное напряжение усилителя. Управляющим органом служит картонная заслонка, а компаратор здесь не что иное, как оптический закон, гласящий, что свет распространяется по прямой линии, ибо когда пятно на экране электронно-лучевой трубки будет ниже картонной заслонки, фотоэлемент не будет освещен, а когда оно будет выше картонной заслонки, на фотоэлемент попадет свет. Как ты видишь, терминам схемы рис. 143 необходимо придавать очень широкий смысл.

Н. — Откровенно говоря, кроме общей схемы организации, я не вижу ничего общего между твоим «моноформером» и системой управления антенной. Но я должен признаться, что сервомеханизмы — для меня совершенно новая область.



Усилитель с отрицательной обратной связью — тип системы автоматического регулирования


Л. — На самом деле, не такая уж новая. Ты, вероятно, сам того не подозревая, уже делал сервомеханизмы или, правильнее сказать, системы автоматического регулирования (это понятие шире предыдущего). Я твердо убежден, что ты уже собирал усилители низкой частоты с отрицательной обратной связью.

Н. — Разумеется, как и любой другой радиолюбитель. Но я не вижу здесь ничего общего с сервомеханизмом. Впрочем, должен сказать, что при сборке усилителя я как дисциплинированный солдат строго выполнял приложенные к схеме инструкции. Я прочитал, что в данном усилителе, добавив один резистор в этом месте и еще один в том, можно существенно улучшить качество звучания за счет некоторой потери усиления, что совершенно не страшно, если первоначальная схема обладает избыточным усилением. Я попробовал, результаты оказались очень хорошие, но должен признаться, что я до сих пор не совсем понимаю почему.

Л. — Если ты повнимательнее присмотришься к добавленным в схему усилителя резисторам, то поймешь, что они имеют целью подать на вход определенную часть выходного напряжения. Для создания такой обратной связи можно, например, снять напряжение со вторичной обмотки трансформатора и, взяв с помощью делителя из резистора десятую часть этого напряжения, подать ее на катод первой лампы или на эмиттер первого транзистора.

Н. — Именно так я и делал свою схему лампового усилителя, но у меня не было впечатления, что при этом что-то вычитается из выходного напряжения.



Л. — Но именно вычитание и происходит, когда ты подаешь напряжение на катод лампы. Это подключение дает такой же результат, как если бы это напряжение с обратным знаком подать на сетку, так как в лампах имеет значение только разность потенциалов между сеткой и катодом. А теперь сравни блок-схему на рис. 143 со схемой, которую я вычертил для тебя на рис. 145.



Рис. 145.Отрицательная обратная связь в усилителе осуществляется путем вычитания из входного напряжения части выходного напряжения. Такой усилитель представляет собой систему автоматического регулирования.


Как ты видишь, входное напряжение представляет собой не что иное, как разность между истинным входным напряжением Uвх и частью выходного напряжения βUвых. Часть выходного напряжения Uвых поступает на вход через аттенюатор с коэффициентом передачи β (меньше единицы). Полученное напряжение βUвых с аттенюатора поступает на один вход «разностной схемы», а на другой вход этой схемы подается входное напряжение Uвх.

Н. — Ты мне уже рассказывал о схеме ИЛИ, о схеме И, но я пока еще ничего не слышал о «разностной схеме».

Л. — Эта схема не относится к категории логических. Ее можно сделать, например, на одной лампе, на сетку которой подается напряжение Uвх, а на катод — напряжение βUвых; анодным током лампы управляет разность этих напряжений U = Uвх — βUвых.

Н. — Теперь я достаточно хорошо разобрался в твоей схеме, но я совершенно не понимаю, какую пользу она может нам дать.



Польза отрицательной обратной связи


Л. — Сейчас ты увидишь. Представь себе, что усилитель имеет очень высокий коэффициент усиления (т. е. отношение Uвых/U). Значит, для получения выходного напряжения Uвых достаточно подать на вход чрезвычайно малое напряжение U, Следовательно, можно сказать, что напряжение U, представляющее собой разность между входным напряжением Uвх и напряжением βUвых, практически ничтожно мало по сравнению с каждой из этих величин. Это означает, что они равны или почти равны одна другой, т. е. можно сказать, что практически Uвх = βUвых. Возьмем для наглядности числовой пример.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Москва при Романовых. К 400-летию царской династии Романовых
Москва при Романовых. К 400-летию царской династии Романовых

Впервые за последние сто лет выходит книга, посвященная такой важной теме в истории России, как «Москва и Романовы». Влияние царей и императоров из династии Романовых на развитие Москвы трудно переоценить. В то же время не менее решающую роль сыграла Первопрестольная и в судьбе самих Романовых, став для них, по сути, родовой вотчиной. Здесь родился и венчался на царство первый царь династии – Михаил Федорович, затем его сын Алексей Михайлович, а следом и его венценосные потомки – Федор, Петр, Елизавета, Александр… Все самодержцы Романовы короновались в Москве, а ряд из них нашли здесь свое последнее пристанище.Читатель узнает интереснейшие исторические подробности: как проходило избрание на царство Михаила Федоровича, за что Петр I лишил Москву столичного статуса, как отразилась на Москве просвещенная эпоха Екатерины II, какова была политика Александра I по отношению к Москве в 1812 году, как Николай I пытался затушить оппозиционность Москвы и какими глазами смотрело на город его Третье отделение, как отмечалось 300-летие дома Романовых и т. д.В книге повествуется и о знаковых московских зданиях и достопримечательностях, связанных с династией Романовых, а таковых немало: Успенский собор, Новоспасский монастырь, боярские палаты на Варварке, Триумфальная арка, Храм Христа Спасителя, Московский университет, Большой театр, Благородное собрание, Английский клуб, Николаевский вокзал, Музей изящных искусств имени Александра III, Манеж и многое другое…Книга написана на основе изучения большого числа исторических источников и снабжена именным указателем.Автор – известный писатель и историк Александр Васькин.

Александр Анатольевич Васькин

Биографии и Мемуары / Культурология / Скульптура и архитектура / История / Техника / Архитектура
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута

С помощью книги Андрея Гусарова вы самостоятельно, неторопливо, без экскурсовода прогуляетесь по самым знаковым местам удивительного города на Неве. Издание включает 34 познавательные экскурсии. Начало повествования посвящено биографии основателя города, последнему русскому царю и первому императору России – Петру I. Здесь же дан обзорный географический очерк с указанием административно-территориального деления Санкт-Петербурга. Вас ждет знакомство с неповторимым и блистательным городом. Вы прочтете о важных городских памятниках архитектуры – великих творениях гениальных зодчих, познакомитесь с всемирно известными музеями – собраниями коллекций живописи, графики, бесценных реликвий прошлого… Узнаете, что Северная столица – место всех религий и в ней рядом стоят великолепные здания разных конфессий. Вы посетите зеленые уголки мегаполиса – парки и скверы и символы города – важные памятники. Истории Медного всадника, Румянцевского обелиска и колонны Славы запечатлели в памяти славное прошлое государства Российского…

Андрей Юрьевич Гусаров

Скульптура и архитектура / Техника / Архитектура