Читаем Электроника?.. Нет ничего проще! полностью

Н. — Хорошо, я признаю твое преобразование Тевенина, но как можно применить его к нашему потенциометру R1?

Л. — Очень просто, нужно представить себе, что источник напряжения 10 в и обе части обмотки потенциометра R1, расположенные выше и ниже ползунка (см. рис. 148), заменены источником, дающим напряжение, точно соответствующее шкале потенциометра R1. Внутреннее сопротивление этого нового источника равно сопротивлению соединенных параллельно двух участков обмотки потенциометра R1.

Как ты видишь, когда движок потенциометра R1 находится очень близко к одному из концов его обмотки, внутреннее сопротивление его очень мало, потому что одна из двух частей потенциометра имеет низкое сопротивление. Можно доказать, что это эквивалентное сопротивление достигает максимума, когда движок потенциометра R1 находится посередине своей обмотки. В этот момент сопротивление каждого из участков обмотки равно половине полного сопротивления всей обмотки.

При параллельном включении эквивалентное сопротивление равно одной четвертой части полного сопротивления обмотки. Иначе говоря, э. д. с. твоего эквивалентного источника, состоящего из батареи 10 в и потенциометра R1, в зависимости от положения движка этого потенциометра изменяется от 0 до 10 в. А внутреннее сопротивление этого источника равно нулю, когда движок потенциометра находится в самом низу, проходит через максимум 500 ом, когда движок достигает середины обмотки, и вновь становится равным нулю, когда движок доходит до своего крайнего верхнего положения. Следовательно, в своих расчетах мы должны исходить из того, что максимальное значение эквивалентного внутреннего сопротивления 500 ом. Как ты видишь, потенциометр с сопротивлением 10 000 ом очень мало изменит ненагруженное выходное напряжение потенциометра R1.



Н. — Теперь-то я все понял. Потенциометр R2 тоже нужно рассматривать как источник напряжения, эквивалентное внутреннее сопротивление которого может достигать 25 000 ом, когда движок этого потенциометра находится посередине своей обмотки. Естественно, что в этих условиях вольтметр с сопротивлением 200 000 ом при работе на шкале 10 в весьма сильно влияет на отдаваемое таким источником напряжение.

Л. — Верно, потери напряжения в результате такого воздействия составляют около 11 %.



Цепь погрешностей


Н. — Но положение представляется мне поистине драматическим: при большом сопротивлении R2 вольтметр неправильно измерит выходное напряжение на потенциометре R2, а при низком сопротивлении потенциометра R2 последний изменит напряжение, снимаемое с потенциометра R1. Иначе говоря, мы оказались в таком же безвыходном положении, как человек, который хотел зарабатывать очень много (чтобы быть богатым) и в то же время очень мало (чтобы платить меньше налогов).

Л. — Противоречивость требований делает задачу весьма неприятной, но тем не менее путем соответствующего компромисса можно найти приемлемое решение. Для достижения максимального снижения вносимых погрешностей следует поставить на место R2 потенциометр сопротивлением 14 000 ом. Однако при желании перемножать три величины с помощью трех каскадно соединенных потенциометров исключительно трудно подобрать потенциометры с возрастающими в геометрической прогрессии сопротивлениями. Поэтому в таких случаях мы воспользуемся более простым способом: между движком потенциометра R1 и резистивной обмоткой потенциометра R2 мы поместим усилитель, понижающий сопротивление, с коэффициентом передачи как можно ближе к единице и обладающим высоким входным и низким выходным сопротивлениями.

Н. — Я полагаю, что здесь ты используешь что-нибудь вроде эмиттерного повторителя или своего суперэмиттериого повторителя, схему которого ты изобразил для меня на рис. 50.


Операционные усилители


Л. — Совершенно верно. И раз мы уже начали говорить об аналоговой вычислительной технике, я покажу тебе, какой интерес могут представлять операционные усилители.

Н. — Вот новая категория усилителей, о которой я ничего не знаю!

Л. — И их ты знаешь значительно больше, чем думаешь. Дело в том, что так называют усилители с непосредственной связью, обладающие высоким коэффициентом усиления, очень высоким входным сопротивлением и очень низким выходным сопротивлением. Несколько позже мы рассмотрим, как такие усилители делают.

А теперь представь себе, что мы собрали усилитель по схеме, приведенной на рис. 151.



Рис. 151.Из-за глубокой отрицательной обратной связи коэффициент передачи усилителя становится равным — 1 (при этом следует считать, что напряжение в точке А почти равно нулю и что входной ток усилителя тоже ничтожно мал).


Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Москва при Романовых. К 400-летию царской династии Романовых
Москва при Романовых. К 400-летию царской династии Романовых

Впервые за последние сто лет выходит книга, посвященная такой важной теме в истории России, как «Москва и Романовы». Влияние царей и императоров из династии Романовых на развитие Москвы трудно переоценить. В то же время не менее решающую роль сыграла Первопрестольная и в судьбе самих Романовых, став для них, по сути, родовой вотчиной. Здесь родился и венчался на царство первый царь династии – Михаил Федорович, затем его сын Алексей Михайлович, а следом и его венценосные потомки – Федор, Петр, Елизавета, Александр… Все самодержцы Романовы короновались в Москве, а ряд из них нашли здесь свое последнее пристанище.Читатель узнает интереснейшие исторические подробности: как проходило избрание на царство Михаила Федоровича, за что Петр I лишил Москву столичного статуса, как отразилась на Москве просвещенная эпоха Екатерины II, какова была политика Александра I по отношению к Москве в 1812 году, как Николай I пытался затушить оппозиционность Москвы и какими глазами смотрело на город его Третье отделение, как отмечалось 300-летие дома Романовых и т. д.В книге повествуется и о знаковых московских зданиях и достопримечательностях, связанных с династией Романовых, а таковых немало: Успенский собор, Новоспасский монастырь, боярские палаты на Варварке, Триумфальная арка, Храм Христа Спасителя, Московский университет, Большой театр, Благородное собрание, Английский клуб, Николаевский вокзал, Музей изящных искусств имени Александра III, Манеж и многое другое…Книга написана на основе изучения большого числа исторических источников и снабжена именным указателем.Автор – известный писатель и историк Александр Васькин.

Александр Анатольевич Васькин

Биографии и Мемуары / Культурология / Скульптура и архитектура / История / Техника / Архитектура
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута

С помощью книги Андрея Гусарова вы самостоятельно, неторопливо, без экскурсовода прогуляетесь по самым знаковым местам удивительного города на Неве. Издание включает 34 познавательные экскурсии. Начало повествования посвящено биографии основателя города, последнему русскому царю и первому императору России – Петру I. Здесь же дан обзорный географический очерк с указанием административно-территориального деления Санкт-Петербурга. Вас ждет знакомство с неповторимым и блистательным городом. Вы прочтете о важных городских памятниках архитектуры – великих творениях гениальных зодчих, познакомитесь с всемирно известными музеями – собраниями коллекций живописи, графики, бесценных реликвий прошлого… Узнаете, что Северная столица – место всех религий и в ней рядом стоят великолепные здания разных конфессий. Вы посетите зеленые уголки мегаполиса – парки и скверы и символы города – важные памятники. Истории Медного всадника, Румянцевского обелиска и колонны Славы запечатлели в памяти славное прошлое государства Российского…

Андрей Юрьевич Гусаров

Скульптура и архитектура / Техника / Архитектура