Читаем Электроника?.. Нет ничего проще! полностью

Л. — Ты не прав. Классические резисторы используются очень широко, так как они выдерживают температуры, которые выводят терморезисторы из строя. А кроме того, зависимость сопротивления резисторов от температуры очень простая, почти линейная, тогда как сопротивление терморезисторов подчиняется относительно сложной закономерности. Резистор из платины может использоваться для измерения температуры от нескольких градусов выше абсолютного нуля (около —260 °C) до 1500 °C. Но имеются также термоэлектрические пары, прочно соединенные два металла (или полупроводниковых материала), контакт между которыми при нагревании превращается в настоящую батарею (рис. 21).



Рис. 21.Термопара состоит из двух спаянных кусочков разных металлов. При нагревании места спая на выводах термопары появляется напряжение, повышающееся при увеличении температуры.


Н. — Чудесно! Значит, достаточно подогреть такие пары металлов и получай электричество. Так это же прекрасное будущее для электростанций!

Л. — Конечно. В частности, в СССР, где занимались этой проблемой, научились получать электроэнергию для транзисторного радиоприемника от батареи термопар, расположенной вокруг стекла керосиновой лампы, используемой для освещения.



Излучение


Н. — А как измеряют высокие температуры, например выше 2000 °C?

Л. — Как ты знаешь, все сильно нагретые тела испускают свет — это форма излучения энергии. Ученые установили, что при не очень высоких температурах полная мощность, излучаемая квадратным сантиметром поверхности нагретого тела, примерно пропорциональна четвертой степени абсолютной температуры Т нагретого тела (т. е. его температуры выше абсолютного нуля, который соответствует —273 °C)[6]. Измерив излучаемую мощность, можно узнать температуру. Этот метод используется для измерения даже очень высоких температур. Но в этих случаях прибегают к слишком смелой экстраполяции законов излучения энергии, а справедливость этих законов для очень высоких температур опровергнута проведением термоядерных взрывов: по этим законам водородная бомба не может взорваться.

Н. — Лично я предпочел бы, чтобы эти законы оказались правильными!!!

Л. — Я тоже, но опыт показал, что бомба взрывается. Следовательно, эти экстраполяции несколько фантастические. Поэтому, когда мне говорят, что температура такой-то звезды равна б миллионам градусов, то я воспринимаю это примерно так же, как если бы мне сказали: «Ее температура 3 тонны или 10 минут».

Н. — Значит, измерения излучения ровным счетом ничего не стоят?.

Л. — Не совсем так. Например, термопары позволили измерить температуру в различных точках Луны и некоторых планет; для этого пришлось полученное с помощью телескопа изображение небесного тела или части небесного тела зеркалом направить на термопару, нагрев которой изменяется в зависимости от температуры наблюдаемого в телескоп тела. Эти измерения дали прекрасные результаты.



Н. — Охотно признаю, но мне хотелось бы, чтобы ты, наконец, рассказал мне о фотоэлементах.

Л. — Я как раз и подхожу к этому вопросу. Но помнишь ли ты, каким образом вырывают электроны из катода электронной лампы?

Н. — Конечно. Для этого повышают температуру тела, что увеличивает подвижность молекул; движущиеся молекулы так толкают электроны, что в конечном счете они вылетают из вещества.

Л. — Примерно так. Для большей точности я добавлю, что вызываемое повышением температуры увеличение энергии электронов позволяет им прорваться через поверхностный слой. Так вот, Незнайкин, энергию электронов можно также увеличить, облучив светом вещество, в котором они находятся…

Н. — Великолепно! Но тогда нагреваемые катоды в электронных лампах можно заменить освещаемыми катодами?



Фотоэлементы



Л. — Твое предложение большой практической ценности не представляет, так как получаемый таким образом ток весьма мал. Чтобы сделать фотоэлемент (рис. 22), нужно взять пластинку, покрытую веществом, способным под воздействием света испускать электроны, и поместить ее в колбу, из которой откачан воздух. В этой же колбе размещается еще одна пластинка, имеющая положительный потенциал относительно первой, называемой катодом. Электроны, испускаемые катодом под воздействием падающего на него света, пойдут к другому электроду (аноду), в результате чего в цепи появляется ток, значение которого зависит от освещенности катода.



Рис. 22.Фотоэлектрический элемент. Под воздействием света катод испускает электроны, а анод эти электроны собирает.


Н. — Как я вижу, фотоэлемент не так уж сложен. Это просто диод, у которого катод не нагрет, а освещен. Но скажи мне, пожалуйста, почему ты нарисовал анод таким маленьким, как кусочек тонкой проволоки? Его следовало бы сделать значительно больше.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Москва при Романовых. К 400-летию царской династии Романовых
Москва при Романовых. К 400-летию царской династии Романовых

Впервые за последние сто лет выходит книга, посвященная такой важной теме в истории России, как «Москва и Романовы». Влияние царей и императоров из династии Романовых на развитие Москвы трудно переоценить. В то же время не менее решающую роль сыграла Первопрестольная и в судьбе самих Романовых, став для них, по сути, родовой вотчиной. Здесь родился и венчался на царство первый царь династии – Михаил Федорович, затем его сын Алексей Михайлович, а следом и его венценосные потомки – Федор, Петр, Елизавета, Александр… Все самодержцы Романовы короновались в Москве, а ряд из них нашли здесь свое последнее пристанище.Читатель узнает интереснейшие исторические подробности: как проходило избрание на царство Михаила Федоровича, за что Петр I лишил Москву столичного статуса, как отразилась на Москве просвещенная эпоха Екатерины II, какова была политика Александра I по отношению к Москве в 1812 году, как Николай I пытался затушить оппозиционность Москвы и какими глазами смотрело на город его Третье отделение, как отмечалось 300-летие дома Романовых и т. д.В книге повествуется и о знаковых московских зданиях и достопримечательностях, связанных с династией Романовых, а таковых немало: Успенский собор, Новоспасский монастырь, боярские палаты на Варварке, Триумфальная арка, Храм Христа Спасителя, Московский университет, Большой театр, Благородное собрание, Английский клуб, Николаевский вокзал, Музей изящных искусств имени Александра III, Манеж и многое другое…Книга написана на основе изучения большого числа исторических источников и снабжена именным указателем.Автор – известный писатель и историк Александр Васькин.

Александр Анатольевич Васькин

Биографии и Мемуары / Культурология / Скульптура и архитектура / История / Техника / Архитектура
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута
Путеводитель по Петербургу. Увлекательные экскурсии по Северной столице. 34 маршрута

С помощью книги Андрея Гусарова вы самостоятельно, неторопливо, без экскурсовода прогуляетесь по самым знаковым местам удивительного города на Неве. Издание включает 34 познавательные экскурсии. Начало повествования посвящено биографии основателя города, последнему русскому царю и первому императору России – Петру I. Здесь же дан обзорный географический очерк с указанием административно-территориального деления Санкт-Петербурга. Вас ждет знакомство с неповторимым и блистательным городом. Вы прочтете о важных городских памятниках архитектуры – великих творениях гениальных зодчих, познакомитесь с всемирно известными музеями – собраниями коллекций живописи, графики, бесценных реликвий прошлого… Узнаете, что Северная столица – место всех религий и в ней рядом стоят великолепные здания разных конфессий. Вы посетите зеленые уголки мегаполиса – парки и скверы и символы города – важные памятники. Истории Медного всадника, Румянцевского обелиска и колонны Славы запечатлели в памяти славное прошлое государства Российского…

Андрей Юрьевич Гусаров

Скульптура и архитектура / Техника / Архитектура