Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Теперь остается выбрать намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (С-4), причем обычно один тип такого провода можно заменять другим. Диаметр провода выбирается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла. Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и отбирать значительную часть энергии, которую трансформатор должен передать своим потребителям. Ну а во-вторых, тонкий провод из-за малой поверхности охлаждения будет плохо отдавать тепло в окружающую среду, а это может привести к перегреву трансформатора. За перегревом последует разрушение изолирующего покрытия провода, и в итоге короткое междувитковое замыкание. А это явление чрезвычайно опасное — два соседних проводника, соединившись, создают так называемый короткозамкнутый виток (или группу витков), который, по сути дела, представляет собой самостоятельную обмотку трансформатора, замкнутую накоротко. Сопротивление короткозамкнутого витка очень мало, ток в нем создается огромный, трансформатор раскаляется, как утюг, начинает дымиться и, конечно, быстро выходит из строя.

Диаметр провода выбирают из расчета 2–2,5 ампера на каждый квадратный миллиметр сечения провода. При выборе провода удобно пользоваться таблицей С-4. В одной из колонок этой таблицы указано, сколько витков провода может поместиться в одном квадратном сантиметре окна сердечника при сплошной намотке или намотке рядами с тонкой изолирующей прокладкой между слоями провода. По этим данным можно подсчитать, уместится ли вся обмотка в окне. А если вдруг окажется, что обмотка не умещается, что окно сердечника слишком мало для нее? Диаметр провода уменьшать нельзя, число витков тоже; остается собирать сердечник из пластин с большим окном. Или другой выход: использовать тот же тип пластин, но увеличить толщину набора. При этом увеличится сечение сердечника, а значит, меньше станет «число витков на вольт» и вместе с ним общее число витков.

При изготовлении силового трансформатора нужно проявить все свое терпение и аккуратность. Провод укладывают слоями, между слоями кладут тонкую бумагу, особое внимание обращают на то, чтобы с краев один слой не проваливался на другой. Конечно, в наше время силовые трансформаторы изготавливать самому приходится редко, в продаже бывают трансформаторы самых разных типов. Но даже с учетом этого приведенные простейшие расчетные соотношения и справочные данные могут быть полезны для того, чтобы выбрать трансформатор, проверить, подходит ли он для данного блока питания. Кроме того, иногда приходится переделывать трансформаторы, например, трансформатор от лампового приемника приспосабливать для питания транзисторных схем. В этом случае, убедившись, что трансформатор подходит по мощности, по диаметру провода первичной (сетевой) обмотки, можно эту обмотку оставить нетронутой и только намотать новую вторичную обмотку, предварительно рассчитав ее. Все эти работы, еще раз повторяем, нужно делать очень аккуратно.

Т-283. Выпрямленное напряжение и основная частота пульсаций зависят от того, какая выбрана схема выпрямителя — однополупериодная или двухполупериодная (мостовая). При всех расчетах трансформаторов возникает вопрос: на какое напряжение должна быть рассчитана вторичная обмотка? Напряжение, которое указано для сети, — это эффективное напряжение, амплитуда в сети 220 В достигает 310 В, в сети 127 В — амплитуда 180 В (Т-69).

И при расчете вторичных обмоток тоже исходят из эффективного напряжения на них, понимая, что амплитуда будет на 40 % выше. А вот если напряжение со вторичной обмотки подать на выпрямитель, то чему будет равно выпрямленное, постоянное напряжение? Амплитуде переменного? Его эффективному значению? Или, может быть, какой-либо иной величине?

Поставим вопрос иначе: если задано выпрямленное напряжение, то как его получить, какое для этого нужно иметь переменное напряжение? Оказывается, что это зависит от выбора схемы выпрямителя и от элементов фильтра.

Простейшая схема выпрямления — однополупериодная, уже знакомая нам по детекторным каскадам приемника. Но только там мы выделяли одну из переменных составляющих (низкочастотную), а постоянную отбрасывали, не пускали к усилителю НЧ. А в выпрямителе нам нужна именно постоянная составляющая пульсирующего тока (Р-168;1), и только ее нужно подвести к нагрузке. Однополупериодный выпрямитель работает через такт, использует энергию только одного полупериода переменного напряжения. При этом частота импульсов такая же, как и частота сетевого напряжения, то есть 50 Гц, а постоянная составляющая в спектре пульсирующего тока составляет примерно 32 % от амплитуды импульса (Р-169;1).



Р-169


Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника