Другой пример — кнопочный телефонный аппарат. Слов нет, набирая нужный номер, гораздо удобнее нажимать кнопки, чем крутить телефонный диск. Но за это удобство приходится довольно дорого платить — кнопочному номеронабирателю нужна электронная схема из нескольких тысяч деталей. В этой схеме должен быть генератор сравнительно медленных импульсов, которые нужно послать в линию, сообщая о набранном номере (Т-111, Р-71); должна быть система ввода, при нажатии той или иной клавиши она сформирует сигнал из нужного числа импульсов; должна, наконец, быть память, так как вы можете нажимать кнопки очень быстро, а посылать импульсы в линию нужно в строго определенном темпе, не спеша. Поэтому набранный вами номер сразу же запоминается в триггерных ячейках и уже оттуда подается в линию. Кстати, появление памяти позволяет ввести в аппарат очень удобное приспособление и не повторять каждый раз набор занятого номера, а извлекать его из памяти, нажав кнопку «Повтор».
Кнопочный телефонный аппарат стал реальностью только после того, как вся его электроника, по числу деталей эквивалентная десятку приемников, превратилась в одну интегральную схему (отечественная МОП-схема К145ИК8П; вся серия К145 в основном предназначена для телефонных аппаратов разной сложности, в частности с разным количеством запоминаемых номеров).
Первые микросхемы представляли собой просто несколько транзисторов с простейшими связями, затем в кристалле начали появляться узлы сложных схем, а сейчас в одном кристалле размещают сами эти сложные схемы целиком или почти целиком. Так, например, в одной микросхеме почти целиком находится радиовещательный приемник (К-18;14,15), или транзисторная память, в которую можно записать целую книгу, или, наконец, процессор вычислительной машины (Т-277), как его называют после превращения в одну интегральную схему, микропроцессор.
Вот уже несколько лет, как микропроцессоры перестали быть собственностью одних только ЭВМ. Оставаясь первоклассным вычислителем или, точнее говоря, именно благодаря этому, микропроцессор стал универсальным управляющим устройством в системах автоматики. Перед установкой или в процессе работы микропроцессор можно запрограммировать на решение самых разных задач — от управления токарным станком, стиральной машиной или автомобильным карбюратором до выработки команд коррекции орбиты в бортовой автоматике космического аппарата. И хотя микропроцессор— это интегральная схема, в которой обычно несколько десятков тысяч элементов, стоимость его сравнительно невелика, и он становится самым активным, пожалуй, помощником человека в деле управления огромным миром работающей на нас техники.
Такой переворот действительно произошел, но ждать его пришлось почти четверть века. Потому, что во времена кристадина физика еще не построила фундамент, на котором потом выросла полупроводниковая электроника. Только глубокие исследования физических процессов в твердом теле позволили в деталях понять, что же происходит в полупроводниках, и только на основе этого понимания развилась вся современная техника полупроводниковых приборов и интегральных схем.
А вот еще один интересный пример. В 1917 году Альберт Эйнштейн предсказал индуцированное излучение атомов и молекул, то есть вызванное внешней причиной, а конкретно — внешней электромагнитной волной. Но понадобилось почти сорок лет, чтобы это предсказание, соединившись с глубоким изучением механизмов перехода атомов с одного энергетического уровня на другой, то есть механизмов изменения запасов энергии атома, привело к рождению совершенно новой области науки и техники — квантовой электроники.