Если выступ есть, луч от него отразится, в цепи фотодиода пойдет ток и даст сигнал «1». Отсутствие выступа, а значит, отсутствие тока, — это «0». Каждый уровень аналогового сигнала кодируется двенадцати — четырнадцатиразрядным числом. Диск вращается, одно число следует за другим, и ЦАП воссоздает аналоговый сигнал — копию звука. Цифровой лазерный проигрыватель — система сложная. В нем, например, имеется макропроцессор, управляющий тонкой автоматикой, которая, в частности, заставляет лазерный луч точно двигаться по невидимой спирали, не отклоняясь от расположенных вдоль нее отражающих выступов.
На этом же принципе работает грозный конкурент видеомагнитофона — лазерный цифровой видеопроигрыватель. На одном его видеодиске может уместиться часовая телепрограмма или около 90 тысяч слайдов; автоматика позволяет мгновенно вызвать на экран любой из них. Существует лазерный (оптический) накопитель информации для компьютеров, на одном его диске может быть записана — разумеется, в цифровом виде — чуть ли не тысяча толстых книг.
Приходят цифровые системы и в телевидение. Если аналоговый сигнал, отображающий картинку, с помощью АЦП превращать в цифровой, а его по определенной программе мгновенно обрабатывать в компьютере, то можно получать совершенно новое изображение (Р-184). Так, в частности, на экране телевизора появляются хорошо всем знакомые убегающие или переворачивающиеся надписи — их создают на телецентре путем компьютерной обработки цифрового сигнала.
В последние годы цифровые системы появились даже в телевизорах и видеомагнитофонах, о чем свидетельствует надпись digital — «цифровой». В этих случаях в каждом телевизоре есть свои АЦП и ЦАП, микросхемы в цифровом виде запоминают видеосигнал (обычно небольшую его часть, соответствующую одной строке), обрабатывают «цифру», превращают ее снова в аналоговый сигнал и возвращают на место. Определенная обработка «цифры» позволяет заметно улучшить качество изображения.
Широкое использование цифровых систем, переход на «цифру» прежде всего показывает, что щедрость микроэлектроники, доступность ее сложнейших интегральных схем открыла принципиально новые возможности создания совершенных радиоэлектронных систем.
Здесь, пожалуй, уместно вернуться на нашу основную дорогу, вернуться к прерванному рассказу о союзе радиоэлектронной и космической техники, который мы начали с упоминания о космических телевизионных ретрансляторах.
Еще совсем недавно только из фантастических романов можно было узнать, как звездолет совершает посадку на неизвестную планету. На Земле в Центре управления операторы видят на огромном экране далекие пейзажи, которые космический робот передает с планеты.
Сегодня эта фантастическая картина стала реальностью. В феврале 1965 года, всего через семь лет после запуска первого спутника, станция «Луна-9» совершила мягкую посадку на Луну, провела первую в мире прямую телевизионную передачу с лунной поверхности и показала нам, землянам, лунные ландшафты.