Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Постепенно напряжение уменьшается все быстрее и быстрее, а значит, скорость его уменьшения (отрицательная скорость) все нарастает. Наконец скорость достигает максимума (это отрицательная амплитуда скорости) в момент, когда напряжение проходит через ноль и когда меняется его полярность. Перевалив через ноль, напряжение сначала меняется очень резко, но затем, как это уже было в самом начале, скорость его изменения постепенно уменьшается, приближается к нулю. Ноль скорости соответствует отрицательной амплитуде напряжения, а после этого скорость вновь становится положительной — раз отрицательное напряжение уменьшается, то нужно считать, что напряжение нарастет (если на дворе было минус 10 градусов, а стало минус 5, то мы говорим, что потеплело, температура поднялась).

Если тщательно проследить за тем, как меняется синусоидальное напряжение, то окажется, что скорость его изменения — это тоже синусоида, но только сдвинутая по отношению к синусоиде самого напряжения ровно на 90 градусов (Р-51;5). Подобное совпадение (скорость изменения синусоиды тоже синусоида) ни в каких других зависимостях не встретишь. На Р-51 несколько примеров того, как меняется скорость изменения самых разных переменных напряжений, и везде, кроме Р-51;5, напряжение и скорость его изменения — совершенно разные графики.

То, что мы установили для синусоидального напряжения (его скорость меняется по такому же синусоидальному закону, как и само напряжение), относится к любому другому процессу, график которого — синусоида.

Т-75. Синусоидальное напряжение создает синусоидальный ток через конденсатор; ток опережает напряжение на 90 градусов. Для начала попробуем постепенно менять постоянное напряжение на конденсаторе, подключив его к делителю напряжения. Оказывается, чем резче мы меняем напряжение, тем больше ток. И это вполне объяснимо. Если, например, взять конденсатор емкостью 1 Ф и изменить на нем напряжение на 1 В, то на обкладках накопится лишний кулон зарядов. Если напряжение изменилось на 1 В за 1 сек, то этот кулон придет на обкладки за 1 сек и в цепи пойдет ток 1 А (1 А = 1 К за 1 сек). А если увеличить напряжение на 1 В за 10 сек, то есть менять напряжение в десять раз медленнее, то и ток будет в десять раз меньше: теперь 1 К зарядов пройдет по цепи за 10 сек, то есть за 1 сек пройдет 0,1 К. Это как раз и есть ток силой в 0,1 А.

Теперь мы можем подтвердить правильность графиков Р-49. Напряжение, действующее на конденсаторе, все время будет создавать ток в цепи. Потому что напряжение все время меняется и заряды все время то приходят на обкладки конденсатора, то уходят с них. Наибольший ток будет в те моменты, когда напряжение меняется с максимальной скоростью, то есть когда оно проходит через нуль. Во время амплитуды напряжения ток становится равным нулю: какое-то неуловимое мгновение напряжение как бы не меняется — оно уже перестало расти, но еще не начало уменьшаться. Когда напряжение растет, мы считаем ток положительным, когда напряжение падает, направление тока меняется на обратное, и мы называем это направление отрицательным.

Если к конденсатору подведено синусоидальное напряжение, то скорость его изменения тоже синусоида, и поэтому в цепи течет синусоидальный ток. Построив график тока, можно убедиться, что между ним и напряжением существует сдвиг фаз 90° (четверть периода), причем ток опережает напряжение. Это не нужно понимать так, будто ток появляется раньше, чем мы прикладываем к конденсатору напряжение; подобное невозможно. Просто амплитуда тока наступает на четверть периода раньше, чем амплитуда напряжения (Р-49).

Т-76. Емкостное сопротивление показывает, как конденсатор влияет на величину тока. Конденсатор никакой мощности от генератора не потребляет. В какие-то моменты, правда, генератор затрачивает усилия на то, чтобы зарядить конденсатор, но конденсатор честно возвращает полученную энергию во время разряда. Этим он очень напоминает пружину, которая что берет, то и отдает.

Однако же конденсатор влияет на величину тока в цепи. Так, в частности, ток в цепи будет тем больше, чем больше емкость конденсатора. Потому что с увеличением емкости возрастает число зарядов, которое может накопиться на обкладках (при том же напряжении), а значит, и число зарядов, циркулирующих в цепи. Иными словами, чем больше емкость, тем при прочих равных условиях больше ток в цепи.

Величина тока, как мы только что установили, зависит еще и от того, с какой скоростью меняется напряжение: чем больше эта скорость, тем больше ток. Ясно, что чем выше частота переменного напряжения, тем быстрее оно меняется, тем, следовательно, больше ток в цепи конденсатора. Или, иными словами, если переменное напряжение с частотой 10 Гц создаст в цепи конденсатора ток 5 мА, то такое же по величине напряжение, но с частотой 100 Гц создаст в той же цепи ток уже 50 мА.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника