Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Чтобы кратчайшим путем добраться до ответов на эти вопросы, проведем маленький эксперимент. Изменяя частоту, доведем контур до резонанса (Р-58;2) и для определенности предположим, что этот резонанс наблюдается на частоте 200 кГц. Теперь возьмем и уменьшим индуктивность катушки Lк. Из-за уменьшения Lк уменьшится индуктивное сопротивление xL и тут же нарушится равенство xL = хс. А значит, нарушится равенство UL = Uс я никакого резонанса в цепи уже не будет. Чтобы восстановить резонанс, нужно постепенно увеличивать частоту переменного напряжения, которое поступает с генератора. С увеличением частоты начнет расти xL, уменьшаться хс, и на какой-то частоте они вновь уравняются, в цепи вновь наступит резонанс.



Р-58


Такой же точно результат получится, если уменьшить не индуктивность L, а емкость С контура (Р-58;3). Или если одновременно уменьшать индуктивность L и емкость С. В этих случаях резонанс тоже будет наблюдаться на более высокой частоте.

Вывод из этих экспериментов такой: частота fpeз, на которой наблюдается резонанс, определяется параметрами самой LC-цепи. С уменьшением L и С резонансная частота повышается, с увеличением L и С резонансная частота понижается (Р-58, Р-59). На Р-58;1 показано, как, исходя из условия резонанса xL = xc, можно путем простейших преобразований получить точную формулу для fрез, а на Р-58;4,5,6 приведены удобные расчетные формулы, с помощью которых можно найти fрез при известных L и С или подобрать L и С, чтобы получить резонанс на нужной частоте.

То, что мы узнали о резонансном фильтре — колебательном контуре, — это лишь небольшая часть важных сведений о нем. Хорошо бы, например, еще узнать, от чего зависит высота резонансной кривой, почему некоторые контуры резко увеличивают ток на резонансной частоте, а другие повышают его лишь в небольшой степени. Или другой вопрос — отчего зависит ширина резонансной кривой, чем определяется полоса частот, близких к fрез, на которых, хотя и не в полной мере, но все же заметны резонансные явления? И еще: одну и ту же резонансную частоту можно получить при разных соотношениях L и С, если, например, в два раза увеличить индуктивность контура и в два раза уменьшить его емкость, то резонансная частота не изменится. Что же выгодней — добиваясь нужной резонансной частоты, делать контур с большой индуктивностью и маленькой емкостью или наоборот?

Несколько позже мы постепенно по ходу дела обсудим эти вопросы (Т-167, Т-168, Т-169, Т-211, Т-212, Т-213, Т-214), открывая для себя многие интересные особенности колебательных контуров. Ну а пока, подводя предварительный итог знакомства с резонансным фильтром, с контуром, сформулируем главные его особенности. Во-первых, из многих переменных токов с разными частотами контур умеет выбирать ток определенной частоты; во-вторых, изменяя L или С контура, можно добиться, чтобы из сложного аккорда извлекался ток (напряжение) нужной нам частоты (Р-59).



Р-59


Т-87. Трансформатор увеличивает либо напряжение, либо ток, ни в коем случае, однако, не увеличивая мощность. Используя явление взаимоиндукции, можно передавать электрическую энергию из одной цепи в другую без непосредственного контакта между ними. Устройство, которое осуществляет такую передачу, это и есть трансформатор, в переводе — преобразователь.

В простейшем случае трансформатор — это две обмотки, связанные общим магнитным потоком Ф (Р-60). В некоторых трансформаторах магнитный поток замыкается по воздуху (Р-60;1), в других — через ферромагнитный сердечник стержневой (Р-60;2), замкнутый кольцевой (Р-60;3,4,5) и «ш-образный» (Р-60;6). В трансформаторах часто бывает несколько обмоток (Р-60;7).



Р-60


Коротко о сердечниках. Сердечники делают из стали, а иногда из пермаллоя, ферромагнитного материала, более дорогого, но зато со значительно большей магнитной проницаемостью (С-6). Сердечники, как правило, собраны из пластин или свиты из тонкой ленты. Это связано с тем, что в самом сердечнике тоже наводится ток, и, если не принять мер, он окажется весьма большим: сердечник — это, по сути дела, короткозамкнутый виток, обмотка с малым сопротивлением. В итоге сердечник будет греться, отбирать значительную мощность. А вот в пластинчатом сердечнике токи в соседних пластинах создают магнитные поля, которые действуют друг против друга (Р-60;8). И в итоге общая мощность, пожираемая сердечником, резко уменьшается.

Потери в сердечнике увеличиваются с частотой, и для высокочастотных трансформаторов и катушек уже недостаточно пластинчатых сердечников. Ферромагнитный материал измельчают, а затем крупинки спрессовывают с помощью изолирующих смол (Р-60;9), создают так называемые магнитодиэлектрики (С-10).

И опять токи в отдельных крупинках порождают враждующие магнитные поля, потери в сердечнике уменьшаются. При этом, правда, уменьшается результирующая магнитная проницаемость, но что поделаешь, иначе сердечник для высокочастотных катушек вообще не получишь.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника