Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Спортсмен, который обычно прыгает в длину на семь-восемь метров, не преодолеет и четырех, если лишить его возможности разбега, заставить прыгать с места. Дело в том, что при разбеге спортсмен создает некоторый запас энергии, который в момент прыжка добавляет к силе своих мускулов. Физика очень точно определяет этот запас — это не что иное, как кинетическая энергия, которой обладает любое движущееся тело, в нашем примере — бегущий человек. Чем больше масса тела и его скорость, тем больше этот запас, больше кинетическая энергия. Это легко поймет тот, кому приходилось, разогнав велосипед, долгое время катиться по инерции. Шоферы хорошо знают, что чем больше скорость автомобиля и чем сильнее он нагружен, тем труднее машину остановить, то есть погасить в тормозах ее кинетическую энергию.

Кинетическая энергия у какого-либо тела, конечно, не появляется сама собой. Ее накапливают с помощью мускулов, сожженного бензина, взорванного пороха — словом, с помощью любых источников энергии, способных толкать, двигать, вращать, способных «создавать скорость».

Теперь можно сказать, кто же этот второй потребитель энергии, участвующий в колебаниях струны. Это движение. Если, оттянув струну, вы отпустите ее на свободу, то силы упругой деформации постараются сразу же вернуть ее в исходное положение, к условной средней линии. При этом струна начнет двигаться и набирать скорость, а значит, увеличивать запасы кинетической энергии. Но и эти запасы струна не хранит у себя, а постепенно отдает их. И опять тот же вопрос — кому?

В поисках ответа мы сейчас прокрутим — разумеется, условно, мысленно — небольшой учебный кинофильм.

…В зале медленно гаснет свет. Звучит музыкальное вступление, и на экране появляются пляшущие буквы. Буквы постепенно вытягиваются в три ровные линии, мы читаем название фильма: «Свободные колебания струны». И тут же слышим голос диктора: «Замечательная техника современного кино позволяет нам увидеть колебания гитарной струны, замедленные в несколько тысяч раз».

На экране струна, натянутая между двумя массивными стойками. Откуда-то со стороны выплывает рука, указательным пальцем цепляет струну и оттягивает в сторону. На том месте, где только что была струна, остается пунктирная линия, и тут же возле нее появляется надпись: «Линия покоя». Снова голос диктора: «Оттянув струну, мы затратили некоторую энергию».

Палец отпускает струну. Она начинает двигаться, сначала медленно, затем все быстрее. Двигаясь, струна в какой-то момент сливается с пунктирной «линией покоя». Голос поясняет: «Под действием сил упругости струна вернулась в положение покоя. Но остановиться здесь она не может: почти вся энергия, которую мы передали струне, оттянув ее, теперь перешла в кинетическую энергию, и, только потеряв ее, струна сможет вновь обрести покой. А пока она продолжает двигаться».

Проскочив пунктирную «линию покоя», струна продолжает двигаться и вновь изгибается, оттягивается, но теперь уже сама. И конечно, изгибается в противоположную сторону. Струна изгибается все сильнее. Скорость ее уменьшается. Голос диктора: «Сейчас струна, истратив свою кинетическую энергию, остановится. Но это лишь кажущийся покой — струна вновь деформирована, и силы упругости снова начинают двигать ее, вновь приближая струну к «линии покоя».

Диктор сказал правду: мы действительно видим, как струна движется к пунктирной линии, вновь сливается с ней на какое-то неуловимое мгновение и, проскочив эту линию, продолжает двигаться… Вот она уже почти на том же месте, куда когда-то оттянул ее палец… Неуловимая остановка, и, изменив направление на обратное, снова в путь, снова к «линии покоя»…

Однако не будем утомлять себя этим однообразным зрелищем. Покинем на время кинозал и попробуем устроить небольшое обсуждение фильма.

Т-91. Свободные колебания — чрезвычайно широкий класс процессов, в которых происходит обмен энергией между двумя ее накопителями. Мы видели, что струна сама по себе двигалась то туда, то обратно, то есть совершала свободные колебания. Струна двигалась относительно некоторого устойчивого состояния, относительно «линии покоя». В процессе колебаний по синусоиде менялась скорость струны, по синусоиде менялось ее отклонение от средней линии. Первопричина всего этого — обмен энергией между двумя накопителями, между силами упругости и движением. Оба накопителя энергии существуют в натянутой струне не каждый сам по себе, они взаимосвязаны — упругая деформация стремится двинуть струну, создать у нее запас кинетической энергии, а кинетическая энергия стремится изогнуть струну, запасти в ней энергию в виде упругой деформации. Поэтому, как только мы передали струне порцию энергии, накопители сразу же начали перебрасывать ее друг другу. Начались свободные колебания.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника