Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Т-142. Мощность усиливаемого сигнала выделяется в нагрузке. Чтобы от общих представлений об усилителях, от усилителя в принципе, сделать первый шаг к конкретным усилительным схемам, нужно включить в цепь, где проходит коллекторный ток, нагрузку. Именно нагрузка отбирает у меняющегося коллекторного тока мощность, отбирает мощность у «мощной копии» сигнала, превращает ее в звук, в свет на телевизионном экране, в какое-либо действие в системе автоматического управления или, наконец, просто в более мощный электрический сигнал, который подвергается дальнейшей обработке. Соответственно в качестве нагрузки может быть включен громкоговоритель, кинескоп, исполнительное устройство электронного автомата. Но для электрических цепей усилителя все они не более чем потребители энергии, не более чем резисторы. И, интересуясь пока только «электрическими событиями» в транзисторном усилителе, будем считать его нагрузкой обычный резистор Rн (Р-84;6). Тем более что очень часто, когда от усилителя требуется просто более мощный электрический сигнал, именно резистор включен в коллекторную цепь.

Т-143. Усиление по мощности складывается из усиления по току и усиления по напряжению. Что должен сделать усилитель, усиливая слабый сигнал? Увеличить ток? Увеличить напряжение? Усилитель должен увеличить мощность сигнала. Если можно было бы обойтись только напряжением или только током, то не нужен был бы никакой усилитель, все прекрасно сделал бы обычный трансформатор. Усилитель применяют, когда от сигнала требуется большая мощность, когда у него просто не хватает сил, как, скажем, в примере с микрофоном и громкоговорителем (Т-122).

Мощность — произведение тока на напряжение, Р = UI (Т-41). А значит, можно разными способами увеличивать мощность, менять один из сомножителей — ток I, или напряжение U, или оба вместе.

На рисунке Р-84 показано несколько примеров того, что может произойти с мощностью электрического сигнала в некотором условном его преобразователе — он изображен в виде квадрата. Цифры в примерах подобраны так, чтобы без громоздких вычислений можно было уловить суть дела. Первый пример относится к трансформатору и подтверждает, что он не увеличивает мощность сигнала. Мощность могут повысить разные схемы транзисторных усилителей, но делают они это по-разному. Схема ОБ, увеличивая напряжение сигнала (об этом принято говорить так — схема дает усиление по напряжению), схема ОК — за счет увеличения тока (усиление по току), а схема ОЭ, увеличивая и ток и напряжение, причем, как правило, в различное число раз. Нужно, по-видимому, пояснить, что загадочные буквы ОБ, ОК и ОЭ означают «общая база», «общий коллектор» и «общий эмиттер», они отражают некоторые особенности включения самого транзистора в схему усилителя. Об этих особенностях речь впереди (Т-190), а пока знакомство с транзисторным усилителем продолжим на примере самой распространенной его схемы ОЭ, которая, кстати, рассматривалась и во всех предыдущих примерах (Р-83, Р-84;6).

Т-144. Усилительные возможности транзистора отражает его коэффициент усиления по току (В). То, что транзистор дает усиление по току, связано с процессами, которые происходят в базе. Все попавшие сюда из эмиттера заряды можно разделить на две части — те, что проходят в коллекторный переход и в итоге включаются в коллекторный ток, и те заряды, которые в коллекторный переход не попадают, а циркулируют во входной цепи, поддавшись притягивающему действию напряжения на базе.

Не забывайте — эмиттерный переход открыт, когда на базе «минус», и она старается забрать себе все свободные положительные заряды, все дырки, которые приходят из эмиттера. Это нормальное, законное действие базы: если бы оторвать от транзистора коллектор, то в базовой цепи циркулировали бы вообще все заряды, вышедшие из эмиттера. Однако же коллектор существует, и за счет диффузии в тонкой базе часть зарядов отклоняется от своего нормального, законного пути во входную цепь, попадает в коллекторный переход.

Введем несколько обозначений. Все заряды, которые вышли из эмиттера, создают эмиттерный ток Iэ (Р-85; 1), те, что попали в коллекторный переход, создают коллекторный ток Iк, а те, что сумела захватить база, воспользовавшись своими законными правами, своим «минусом», замыкаются по входной цепи и создают базовый ток Iб.



Р-85


Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника