Читаем Электроника шаг за шагом [Практическая энциклопедия юного радиолюбителя] полностью

Все ограничения токов и напряжений в транзисторе чаще всего связаны с их тепловым режимом. Полупроводники очень чувствительны к повышению температуры. Нагрев приводит к резкому увеличению числа собственных носителей заряда, лавинообразно нарастают созданные этими зарядами токи, которые в итоге и производят разрушительную работу — соединяют накоротко, сваривают зоны транзистора, превращают его в простой проводник. Или наоборот — разрушают материал настолько, что образуется разрыв цепи. Обе эти разновидности неустранимых повреждений легко обнаружить омметром (Р-83;9,10). Но еще проще сделать так, чтобы повреждений этих не было совсем.

Особенно велики опасности разрушительного перегрева в коллекторной цепи, где создается «мощная копия» сигнала, циркулируют довольно большие токи и действуют немалые напряжения. Для коллекторной цепи указывают предельные токи и напряжения, а также предельную мощность. И вот почему. Чаще всего бывает так, что нельзя одновременно установить предельно допустимый коллекторный ток Iк. доп и предельно допустимое напряжение на коллекторе Uк. доп. Это легко увидеть на конкретном примере. Для транзистора П214 допустимый коллекторный ток — 5 А, допустимое напряжение на коллекторе — 60 В (С-15). Но если установить режим транзистора, при котором одновременно будут достигнуты обе эти величины, то в коллекторной цепи выделится мощность Рк = 5 А ∙ 60 В = 300 Вт. А для транзистора П214 допускается всего лишь Рк.доп= 10 Вт. Поэтому, если установить предельно допустимый ток 5 А, то напряжение на коллекторе не должно быть больше, чем 2 В (Рк = 5 А ∙ 2 В = 10 Вт), а если установить предельно допустимое напряжение 60 В, то ток не должен превышать 0,17 А, то есть 170 мА (Рк = 60 В ∙ 0,17 А = 10 Вт).

На вольт-амперной характеристике коллекторной цепи (Р-88) есть дугообразная линия, граница допустимой мощности. Эта линия появилась как результат простых арифметических операций: определялись такие пары тока Iк и напряжения Uк, при которых Pк = IкUк не превышает допустимую мощность Рк_доп. Точно такая же граница допустимых токов и напряжений может быть построена для любого реального транзистора.

Допустимые параметры для мощных транзисторов приводятся в расчете на то, что они работают с внешними радиаторами (К-15), которые отводят тепло, предотвращают повышение температуры полупроводниковых материалов. При работе без радиаторов предельные параметры мощных транзисторов снижаются, как правило, в десять — двадцать раз. Если, скажем, с радиатором транзистор может создать «мощную копию» сигнала в 10 Вт, то без радиатора он едва вытерпит режим, при котором выходная мощность один ватт, а то и полватта.

О важнейшем усилительном параметре транзистора, коэффициенте усиления по току В, мы уже говорили (Т-144). Стоит лишь добавить, что измерение В может производиться в разных схемах и режимах. Если входить в тонкости, то насчитывается несколько разных значений этого коэффициента. Мы же ограничимся одним значением В — так называемым статическим коэффициентом усиления, который получают, измерив на прямолинейном участке вольт-амперной характеристики постоянный ток Iб и соответствующий ему постоянный ток Iк. На К-16 есть схема простейшей приставки к авометру для измерения коэффициента усиления В.

Параметр «предельная частота», или, иначе, «граничная частота» fгр, тоже не требует особых пояснений. Разные типы транзисторов по-разному работают на разных частотах. Причем граница существует только со стороны высоких частот — если транзистор работает на частоте fгр, то он прекрасно работает и на более низких частотах. Граничной обычно считают ту частоту, на которой усилительные способности транзистора ухудшаются примерно на 30 процентов. Правда, при дальнейшем увеличении частоты коэффициент усиления быстро падает, и вскоре транзистор вообще перестает усиливать.

И несколько слов о еще одном важном параметре — неуправляемом коллекторном токе Iко. Во всяком полупроводниковом материале, кроме тех свободных зарядов, которые появились с введением донора или акцептора, есть еще и собственные свободные заряды. Их сравнительно немного, но они есть. Причем если примесь создает в полупроводнике только один тип проводимости — только р или только n, то собственных дырок и электронов в любом проводнике поровну. В зоне n собственные свободные электроны смешиваются с примесными, а вот собственные дырки так и живут особняком, создают в зоне n небольшую дырочную проводимость. Точно так же в зоне р собственные дырки полупроводника теряются в общей массе примесных положительных зарядов, а собственные свободные электроны создают небольшую проводимость n-типа.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника