Емкость диода меняется при изменениях обратного напряжения смещения диода. Начальное обратное напряжение подводится к диоду от делителя R1
R3, шунтированного конденсатором C1. Резистор R2 развязывает схему питания от резонансного контура генератора. Мгновенное значение напряжения на емкостном диоде является суммой напряжения смещения и напряжения низкой частоты, подведенного с помощью трансформатора. В результате к LC-контуру генератора параллельно подключается переменная емкость. Из-за того что приращение емкости С емкостного диода изменяется вместе с изменением модулирующего сигнала, частота колебаний генератора подвергается изменению, пропорциональному амплитуде сигнала.Помимо представленных методов непосредственной модуляции применяется метод косвенной частотной модуляции, позволяющий поддерживать соответствующее постоянство несущей частоты при отсутствии модуляции. Для осуществления такого метода используются модулятор Армстронга (косвенный частотный модулятор —
На каком принципе работают частотные демодуляторы?
Большинство используемых частотных демодуляторов, служащих для получения модулирующего сигнала из частотно-модулированного, работает на принципе преобразования изменений частоты в изменения амплитуды и последующего детектирования сигнала с амплитудной модуляцией с применением обычных методов. Известны также частотные демодуляторы, работающие на принципе счета импульсов, а также более сложные демодуляторы, выполняемые в виде интегральных микросхем.
Характерным для техники частотной демодуляции является то, что собственно демодулятору, как правило, предшествует ограничитель амплитуды. Задачей ограничителя является исключение изменений сигнала, вызванных мешающими сигналами, для эффективного подавления на выходе демодулятора.
Как действует ограничитель амплитуды?
Простым ограничителем служит усилитель, управляемый сигналом, превышающим уровень максимального (без искажений) возбуждения транзистора между отсечкой и насыщением. Транзистор, работающий в схеме ограничителя, представлен на рис. 11.17,
Рис. 11.17.
а
— электрическая схема; б — рабочий диапазон на плоскости коллекторных характеристик; в — характеристика ограниченияВ рабочей точке
Какая схема у простого частотного детектора?
Наиболее простым частотным детектором является детектор, работающий на скате амплитудной характеристики резонансного контура. Принцип работы такого детектора изображен на рис. 11.18.
Рис. 11.18.
Резонансный контур отстроен от несущей частоты подведенного частотно-модулированного сигнала. Если частота этого сигнала меняется по синусоидальному закону в соответствии с изменением модулирующего сигнала, то ток в контуре также меняется синусоидально, возрастая при приближении частоты сигнала к резонансной частоте контура и убывая при удалении частоты сигнала от значения, соответствующего резонансу. При таком решении выходной сигнал является амплитудно-модулированным. На выходе схемы амплитудного детектирования получаем модулирующий сигнал.
Из-за нелинейности ската амплитудной характеристики резонансного контура и связанных с ней искажений демодулированного сигнала, а также большой чувствительности схемы к амплитуде входного сигнала эта простая схема детектора не используется.
Как действует частотный дискриминатор?
Частотный дискриминатор является одной из наиболее часто используемых схем частотной демодуляции. Схема такого дискриминатора представлена на рис. 11.19.
Рис. 11.19.