Читаем Электроника в вопросах и ответах полностью

Цифровая техника находит широкое применение в измерительных, устройствах, математических и вычислительных машинах, различных профессиональных электронных устройствах и все более широко в бытовой аппаратуре повседневного использования. Во многих случаях введение цифровой техники вместо аналоговой увеличивает надежность работы и точность (в частности, устраняется погрешность отсчета), упрощает конструкцию, уменьшает габаритные размеры и массу устройств, упрощает программирование, дает возможность регистрации информации. Используемые в цифровой технике схемы имеют также ряд преимуществ: их можно изготавливать в виде полупроводниковых интегральных микросхем.

Какая система счисления является основой цифровой техники и почему?

Основу цифровой техники образует двоичная система выражения цифр, называемая также бинарной системой, и связанный с ней математический аппарат, называемый булевой алгеброй.

В двоичной системе счисления любое число удается записать с помощью 1 или 0, например двоичное число 11101011 соответствует десятичному числу 235. Каждая позиция числа, записанного в двоичной системе счисления, представляет одно из двух состояний (1 или 0). В электронике имеются элементы (транзистор, лампа, диод), которые могут работать в двух состояниях: пропускания (включено) и непропускания (выключено). Например, цепь тока — состояние включения и состояние выключения, реле — состояние замыкания и состояние размыкания.

Относительно электрических сигналов двоичная система счисления также соответствует двум состояниям или двум уровням: высокому (более положительному) и низкому (менее положительному, нулевому или даже отрицательному). Если высокое состояние рассматривать как «1», а низкое как «0», то имеем так называемую положительную логику. При таком условии каждое из двух возможных состояний элемента или схемы условно обозначается следующим способом (рис. 12.2): состояние H (от англ. high—высокий) или 1 — да — элемент активный; состояние L (от англ. low — низкий) или 0 — нет — элемент пассивный. В случае отрицательной логики высоким уровням присваивается 0, а низким 1. В дальнейшем примем только положительную логику.

На практике невозможно осуществить такое условие, при котором все цифровые сигналы точно соответствуют одному из двух принятых уровней, и разрешаются некоторые допуски, так что следовало бы скорее говорить о двух интервалах, в которых находятся сигналы.



Рис. 12.2.Интерпретация уровней цифрового сигнала в положительной логике

Что такое двоичная система записи числа?

Объяснение двоичной системы проще всего провести сравнением с широко используемой в других областях десятичной системой.

Как известно, в десятичной системе для записи чисел используются десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Позиция (положение) каждой цифры в числе, записанном в десятичной системе, определяет ее значение, например цифра 3 в числе 235 определяет три десятка, т. е. 30, а цифра 3 в числе 2350 определяет три сотни, т. е. 300.

Для этих примеров можно записать:

235 = 2·102 + 3·101 + 5·100;

2350 = 2·103 + 3·102 + 5·101 + 0·100.

Как легко заметить, в десятичной системе каждое число записывается как последовательность коэффициентов при последовательных степенях основания этой системы.

В двоичной системе основание равно двум и имеются только две цифры 1 и 0. Последовательность цифр в двоичной записи числа представляет собой коэффициенты при соответствующих степенях двойки.

Например, имеем:

0 = 0·23 + 0·22 + 0·21 + 0·20, т. е. 0000;

1 = 0·23 + 0·22 + 0·21 + 1·20, т. е. 0001;

2 = 0·23 + 0·22 + 1·21 + 0·20, т. е. 0010;

3 = 0·23 + 0·22 + 1·21 + 1·20, т. е. 0011;

4 = 0·23 + 1·22 + 0·21 + 0·20, т. е. 0100;

15 = 1·23 + 1·22 + 1·21 + 1·20, т. е. 1111;

235 = 1·27 + 1·26 + 1·25 + 0·24 + 1·23 + 0·22 + 1·21 + 1·20 = (128 + 64 + 32 + 0 + 8 + 0 + 2 + 1), т. е. 11101011.

Что такое двоично-десятичная система счисления?

Как видно из приведенных выше примеров, двоичная запись, образованная из четырех цифр, это четырехбитовая запись. Она позволяет записать лишь числа от 0 до 15 (23 + 22 + 21 + 20 = 8 + 4 + 2 + 1), и на этом ее емкость исчерпывается. В связи с этим в цифровой технике часто пользуются и другими двоичными системами, представляющими модификацию «чистой» системы, т. е. двоичной системы, обозначаемой обычно как 8421.

Часто применяется двоично-десятичный код. Он основан на том, что каждую цифру числа, записанного в десятичной системе, записывают отдельно с помощью четырех битов. Поясним это на примере числа 235 (табл. 12.1).



Достоинством двоично-десятичной системы является упрощение замены чисел, записанных в десятичной системе, числами, записанными в двоичной системе, и наоборот.

Какие основные действия над двоичными числами?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже