Относительно электрических сигналов двоичная система счисления также соответствует двум состояниям или двум уровням: высокому (более положительному) и низкому (менее положительному, нулевому или даже отрицательному). Если высокое состояние рассматривать как «1», а низкое как «0», то имеем так называемую положительную логику. При таком условии каждое из двух возможных состояний элемента или схемы условно обозначается следующим способом (рис. 12.2): состояние H
(от англ.На практике невозможно осуществить такое условие, при котором все цифровые сигналы точно соответствуют одному из двух принятых уровней, и разрешаются некоторые допуски, так что следовало бы скорее говорить о двух интервалах, в которых находятся сигналы.
Рис. 12.2.
Что такое двоичная система записи числа?
Объяснение двоичной системы проще всего провести сравнением с широко используемой в других областях десятичной системой.
Как известно, в десятичной системе для записи чисел используются десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Позиция (положение) каждой цифры в числе, записанном в десятичной системе, определяет ее значение, например цифра 3 в числе 235 определяет три десятка, т. е. 30, а цифра 3 в числе 2350 определяет три сотни, т. е. 300.
Для этих примеров можно записать:
235 = 2·102
+ 3·101 + 5·100;2350 = 2·103
+ 3·102 + 5·101 + 0·100.Как легко заметить, в десятичной системе каждое число записывается как последовательность коэффициентов при последовательных степенях основания этой системы.
В двоичной системе основание равно двум и имеются только две цифры 1 и 0. Последовательность цифр в двоичной записи числа представляет собой коэффициенты при соответствующих степенях двойки.
Например, имеем:
0 = 0·23
+ 0·22 + 0·21 + 0·20, т. е. 0000;1 = 0·23
+ 0·22 + 0·21 + 1·20, т. е. 0001;2 = 0·23
+ 0·22 + 1·21 + 0·20, т. е. 0010;3 = 0·23
+ 0·22 + 1·21 + 1·20, т. е. 0011;4 = 0·23
+ 1·22 + 0·21 + 0·20, т. е. 0100;15 = 1·23
+ 1·22 + 1·21 + 1·20, т. е. 1111;235 = 1·27
+ 1·26 + 1·25 + 0·24 + 1·23 + 0·22 + 1·21 + 1·20 = (128 + 64 + 32 + 0 + 8 + 0 + 2 + 1), т. е. 11101011.Что такое двоично-десятичная система счисления?
Как видно из приведенных выше примеров, двоичная запись, образованная из четырех цифр, это четырехбитовая запись. Она позволяет записать лишь числа от 0 до 15 (23
+ 22 + 21 + 20 = 8 + 4 + 2 + 1), и на этом ее емкость исчерпывается. В связи с этим в цифровой технике часто пользуются и другими двоичными системами, представляющими модификацию «чистой» системы, т. е. двоичной системы, обозначаемой обычно как 8421.Часто применяется двоично-десятичный код. Он основан на том, что каждую цифру числа, записанного в десятичной системе, записывают отдельно с помощью четырех битов. Поясним это на примере числа 235 (табл. 12.1).
Достоинством двоично-десятичной системы является упрощение замены чисел, записанных в десятичной системе, числами, записанными в двоичной системе, и наоборот.
Какие основные действия над двоичными числами?
Очевидно, что действия с двоичными числами отличны от операций, которые выполняют с числами, записанными в десятичной системе. Они очень просты и легки для запоминания.
Сложение чисел, записанных в двоичной системе, выполняется в соответствии со следующим правилом (или иначе алгоритмом):
0 + 0 = 0;
0 + 1 = 1;
1 + 0 = 1;
1 + 1 = 0 с переносом единицы на следующую позицию влево.
Последний алгоритм имеет сходство со сложением в десятичной системе, когда результат сложения больше или равен 10,
Вычитание осуществляется согласно следующему алгоритму:
0 — 0 = 0;
0 — 1 = 1 и затем со следующей позиции (похоже на ситуацию в десятичной системе);
1 — 1 = 1;
1 — 1 = 0.
Умножение чисел в двоичной системе производится очень просто. Вместо большой таблицы умножения в десятичной системе в двоичной имеем маленькую и легкую для запоминания таблицу
0·0 = 0;
1·0 = 0;
0·1 = 0;
1·1 = 1.
Деление двоичных чисел обычно заменяется умножением, и при этом используются приведенные выше алгоритмы.
Что такое логические элементы?
Логическим элементом, или функтором, называется элемент, принимающий значения 0 и 1. В нем существует определенная логическая связь между входным и выходным сигналами. Связь между сигналами определяется логической функцией. Для математического описания логической функции используется булева алгебра.
Основными логическими операциями этой алгебры являются: отрицание, логическое умножение (конъюнкция), логическое сложение (дизъюнкция). Существуют и другие логические операции.