Примерный вид характеристик транзистора с указанием ограничений при выборе рабочей точки представлен на рис. 4.27.
Рис. 4.27.
1
— допустимая область работы; 2 — ограничение из-за нелинейности; 3 — ограничение из-за максимальной мощности потерь Рпот = Iс·Uси; 4 — ограниченно по напряжению из-за пробояКак влияет температура на свойства транзистора и положение рабочей точки?
Температура транзистора значительно сильнее влияет на параметры биполярных транзисторов, чем полевых. В разной степени изменению подвержена все параметры. Особенно заметен рост коэффициента h21э
при увеличении температуры, а также рост обратных токов, например ток Iкбо для кремниевых транзисторов удваивается при повышении температуры на 6 °C.Полевой транзистор обладает меньшей зависимостью от температуры, однако четко прослеживается убывание тока Iс
при увеличении температуры.Примерный вид характеристик биполярного транзистора для разных температур представлен на рис. 4.28.
Рис. 4.28.
Зависимость параметров транзистора от температуры, а следовательно, изменение токов вызывают меньшие или большие изменения положения рабочей точки. Может случиться, что под влиянием температуры рабочая точка сместится так, что появятся сильные искажения или будет превышена максимальная мощность потерь.
Для предотвращения подобных явлений часто прибегают к использованию схем стабилизации рабочей точки.
Что такое схемы питания транзисторов?
Это схемы, обеспечивающие соответствующие постоянные напряжения на электродах транзистора, т. е. устанавливающие заранее выбранную рабочую точку, называемую статической или в состоянии покоя. Схемы питания содержат источники напряжений и цепи, через которые эти напряжения подводятся к транзистору, например цепи резистивных делителей напряжения.
Подача напряжений через делители позволяет: обеспечить на электроде транзистора требуемое напряжение при использовании источника с постоянным напряжением питания, питать все электроды данного транзистора или схемы, состоящей из ряда транзисторов, от одного общего источника, обеспечить подбор сопротивления источника, «видимого» со стороны транзистора. Обычно источник питающего напряжения имеет малое внутреннее сопротивление, которое, будучи подключено ко входу транзистора, нагружает дополнительно источник управляющего сигнала. Для предотвращения этих нежелательных явлений между источником и электродами транзистора используют резисторы.
Какие самые простые схемы питания транзисторов?
Проще всего обеспечить установку рабочей точки транзистора, т. е. подать на его электроды смещение, если соединить соответствующие электроды с источником напряжения посредством отдельных резисторов (рис. 4.29).
Рис. 4.29.
Для схемы ОБ (рис. 4.29,
Eэ
— Iэ·Rэ — Uэб = 0Из этой зависимости при заданном Еэ
и определенном (для выбранной рабочей точки) токе Iэ можно определить сопротивление резистора Rэ, необходимое для смещения перехода эмиттер — база, соответствующее рабочей точке. Для кремниевых транзисторов можно принять Uэб = 0,7 В.Для схемы ОЭ (рис. 4.29, б) для входной цепи имеем следующую зависимость:
Eб
— Iб·Rб — Uбэ = 0Для определения сопротивления резистора Rб
ток Iб определяют из характеристик транзистора для заданной рабочей точки либо из следующих соотношений:Iб
= Iк/h21э; Iб = Iэ/1 + h21эМожно использовать более простое решение, показанное рис. 4.30, для которого достаточно одного источника питания.
Рис. 4.30.
Для схемы ОБ (рис. 4.29,
Eк
— Iк·Rк — Uкб = 0для схемы ОЭ (рис. 4.29,
Eк
— Iк·Rк — Uкэ = 0Какие существуют схемы питания транзисторов с делителем напряжения?
Часто совместно с источником напряжения питания используется делитель из резисторов, обеспечивающий большую свободу при проектировании всей схемы смещения транзистора. Пример подачи смещения на МОП транзистор показан на рис. 4.31.
Рис. 4.31.