Читаем Элементы: замечательный сон профессора Менделеева полностью

Что же представляет сиборгий? Он является близким аналогом молибдена и вольфрама. Известно, что он проявляет степень окисления +6, образуя очень летучий гексафторид (SgF6), а также умеренно летучий гексахлорид (SgCl6) и оксихлориды SgO2Cl2 и SgOCl4 — соединения, аналогичные соединениям других элементов группы хрома.

Единственной другой степенью окисления сиборгия, кроме +6, является нулевая степень окисления. В 2014 году было показано, что сиборгий, аналогично своим трем более легким соседям по группе, образующим гексакарбонильные комплексы, даёт летучий гексакарбонилсиборгий(0) Sg(CO)6, который также летуч, как и его аналоги (Science, 2014: Vol. 345, Issue 6203, Р. 1491–1493).

107. Борий

Может возникнуть вполне резонный вопрос — зачем тратить столько времени, сил и ресурсов на синтез трансфермиевых элементов? Их сложно синтезировать, но, как показывает практика, их получение представляет собой более простой процесс, чем изучение их химических свойств. Получают их в таких количествах, что можно не думать не об их практическом применении, но и даже нельзя полноценно применять термин «период полураспада», который является статистической величиной и может применяться к сотням и больше тысяч атомов, с определённой натяжкой — к сотням и никогда к десяткам (чтобы осознать что такое статистическая величина, представьте — если вы будете кидать монету тысячу раз, то около пятисот раз выпадет «орёл» и около пятисот раз «решка», но если вы кинете ту же монету десять раз, вряд ли она упадет вверх «орлом» ровно пять раз). Тем не менее, синтез новых элементов и изучение их свойств, это не просто «химическое коллекционирование» и заполнение пустых клеток — эксперименты по синтезу сверхтяжёлых элементов позволяют проверить и уточнить теоретические выкладки, и элемент № 107 сыграл в изучении Периодического закона особую роль.

Особенность элемента № 107 — бория в том, что это первый искусственный химический элемент, полученный с помощью холодного слияния ядер. Суть холодного слияния в том, что эта методология сталкивает мишени и ядра атомов с относительно низкой энергией возбуждения (всего лишь с меньшей энергией, чем 20 МэВ). Понижение энергии столкновения нужно, чтобы дочернее ядро — продукт слияния не обладало избытком энергии и не разрушалось бы сразу после образования, не давая возможности себя обнаружить. Естественно, что холодное слияние протекает не при комнатной температуре (для слияния атомных ядер нужна энергия, эквивалентная температурам в десяток миллионов градусов), и его не нужно путать с псевдонаучной концепцией «холодного ядерного синтеза», анонсированного в 1989 году в сообщении Мартина Флейшмана и Стенли Понса об электрохимически индуцированном превращении дейтерия в тритий или гелий в условиях электролиза на палладиевом электроде или так называемой «биологической трансмутации».

О синтезе элемента № 107 впервые сообщила в 1976 году группа Юрия Цолаковича Оганесяна — исследователи изучали спонтанное деление продуктов реакции слияния ядер висмута 209Bi и хрома 54Cr. Как показали дальнейшие исследования изотопов элементов 107, 105 и 104, в реакции 209Bi+54Cr действительно рождаются ядра 261Bh и 262Bh, но многие выводы, сделанные в 1976 году группой из ОИЯИ, оказались ошибочными. Первый успешный синтез бория с помощью холодного слияния было осуществлено в Центре по изучению тяжёлых ионов имени Гельмгольца в немецком городе Дармштадте — исследователи сталкивали те же ядра, что и учёные из Дубны, но при меньших энергиях, в результате чего было получено несколько изотопов элемента № 107, в том числе и 270Bh с периодом полураспада в 61 секунду.

В сентябре 1992 года учёные Дармштадта и Дубны, изучавшие элемент № 107 совместно договорились, что его следует назвать «нильсборий» в честь датского физика Нильса Бора. В 1993 году рабочая группа по трансфермиевым элементам ИЮПАК признала приоритет немецкой группы, а в 1994 году в своей рекомендации предложил название «борий», так как названия химических элементов не было принято образовывать из имени и фамилии учёного. Это предложение было окончательно утверждено в 1997 году (Pure and Applied Chemistry. — 1997. — Т. 69, № 12. — С. 2471–2473.).

Перейти на страницу:

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука