Формально оганесон можно считать самым тяжелым инертным газом. Именно формально: получено достаточно данных в пользу того, что характер заполнения электронной оболочки сверхтяжелых элементов совершенно не таков, как у легких. Дело в том, что из-за большого заряда тяжелых атомных ядер электроны в сверхтяжелых элементах разгоняются до такой скорости, при которой пренебрегать теорией относительности уже нельзя. Конечно же время жизни оганессона слишком мало, и определить экспериментально, будет ли элемент № 118 проявлять свойства инертного газа, невозможно. Тем не менее исследователи из Новой Зеландии и США провели квантово-химические расчеты, результаты которых позволяют считать оганессон уникальным атомом (
Исследователи отмечают, что для оганессона проявление релятивистских эффектов очень существенно – они обусловливают так называемое спин-орбитальное сочетание, то есть взаимосвязь спинового состояния электрона и характеристик его перемещения по орбиталям. При значительном спин-орбитальном сочетании заселенность электронов по уровням со строго определенными энергетическими характеристиками размывается, и электроны, находящиеся около ядра, распределяются практически равномерно, образуя облако электронного газа, или Ферми-газа.
Эффект размывания электронных оболочек постепенно увеличивается вместе с ростом заряда ядра. Согласно расчетам, оганессон существенно отличается от инертных газов, расположенных в той же группе Периодической системы. Состояние электронов в его атоме должно быть очень близким к предельной их делокализации – Ферми-газу. В таком «размазанном» состоянии электроны легко поляризуются, а значит, атомы оганессона будут связываться друг с другом прочными вандерваальсовыми взаимодействиями, и, наиболее вероятно, при комнатной температуре это будет не газ, а твердое вещество. Кроме того, коль скоро внешняя оболочка оганессона – не устойчивый октет, элемент № 118 будет гораздо реакционноспособнее по сравнению с его соседями – инертными газами.
2.0. Вместо эпилога
Незадолго до стопятидесятилетия, которое мы будем отмечать в 2019 году седьмой ряд Периодической системы оказался полностью заполнен, и она стала выглядеть завершённой. Тем не менее, точку ставить рано, и сейчас исследователи пытаются выяснить, есть ли границы у Периодической системы, и сколько химических элементов может еще существовать. Свои ответы на эти вопросы предлагает профессор Университета Мичигана Витек Назаревич.
Работа Назаревича предсказывает, что атомные ядра, в которых протоны и нейтроны будут связаны сильными взаимодействиями, могут существовать до элемента номер 172 – ядро которого будет содержать 172 протона. Сильные взаимодействия смогу стабилизировать такое ядро и не дать ему распасться, но стабилизация будет продолжаться лишь доли секунды. Системы, содержащие более 172 протонов, просто не смогут быть стабилизированы сильными взаимодействиями, то есть на основании предсказаний можно говорить о том, что у Периодической системы все же есть граница.
Расчёты Назаревича дают и ещё один необычный прогноз – по его словам, ядра ряда сверхтяжёлых элементов будут существовать столь короткий промежуток времени, что просто не успеют притянуть к себе хоть какое-то количество электронов и всю свою короткую жизнь буду существовать в виде «голых» комбинаций протонов и нейтронов. Если эти теоретические предсказания когда-то удастся подтвердить эмпирически, учёным придется каким-то образом адаптировать понятие «атом» под новые объекты, которые уже не будут электронейтральными частицами, состоящими из ядра и связанных с ним носителей заряда, противоположного заряду ядра. Правда, удастся ли когда-то получить такие комбинации протонов и нейтронов, а также – могут ли они сформироваться где-то естественным путём, остается загадкой.