Исключительно одно лишь тепло производят специальные атомные станции теплоснабжения (ACT), подобные котельным на органическом топливе. Для отопления и горячего водоснабжения городов нужна вода вдвое «холоднее», чем в АЭС, — с температурой не больше 150 градусов. Уменьшить нагрев вдвое — значит вдесятеро снизить давление в корпусе реактора ACT. Корпус же — ответственнейший элемент реактора. Его диаметр — 6 метров, а длина — 15. В состав ACT входят два таких реактора. Мощность каждого — 500 тысяч киловатт. Оба они способны обогреть город численностью около 300 тысяч человек.
ACT обычно располагается в непосредственной близости от города. Конструкторы позаботились о гарантиях ее надежной работы, об отводе остаточного тепловыделения после какой-либо вынужденной остановки реактора. Например, основной корпус окружен вторым корпусом — «страховочным». Если реактор остановился, то тепло — благодаря естественной циркуляции воды за счет разности температур — отводится даже в случае выхода из строя основных циркуляционных насосов. А при работе на мощности тепло передается потребителю через специальный промежуточный контур. Другими словами, вода из реактора никак не сможет попасть в теплосеть.
Пожалуй, не случайно первые ACT появились в СССР. Ведь большинство из нас проживает в довольно холодных северных широтах. Посмотрите на географическую карту — вся территория США лежит южнее широты Киева. Поэтому нам приходится очень много энергии тратить на отопление жилищ и производственных помещений. Вот почему мы и через годы будем с такой же признательностью, как и первую АЭС, вспоминать атомные станции теплоснабжения под Горьким и Воронежем.
Еще не набрали силу атомные станции, вырабатывающие тепло, а в конструкторских бюро уже спроектированы станции для обеспечения теплом промышленности. «На их основе, — говорится в Энергетической программе, — будут созданы ядерно-технологические комплексы».
Невозможно было «эволюционным» путем создать реакторы для выработки высокотемпературного тепла. Здесь нужно было не модернизировать существующие типы ядерных котлов, а найти принципиально новое решение. И оно было найдено. В активной зоне реактора решили использовать температуростойкий конструкционный материал — графит. Он не плавится, а только возгоняется при очень высокой температуре — 3700 градусов. Из графита выполнены как опорные конструкции, так и стенки активной зоны. Необычны и тепловыделяющие элементы, в которых спрятано ядерное топливо: они имеют форму сферы размером в бильярдный шар. Внутри каждого шара несколько тысяч комочков двуокиси урана в «скорлупах» из пирографита и карбида кремния.
В активной зоне реактора шары насыпаны беспорядочно, как горох в банке. Через пустоты между шарами продувается инертный благородный газ — гелий. Проходя через засыпку, гелий нагревается до 900–1000 градусов и потом отдает тепло потоку тех или иных технологических газов. С помощью этого тепла при 800–900 градусов из природного газа выделяют водород, осуществляют «паровую конверсию метана». При соединении метана и паров воды в присутствии катализатора образуется смесь водорода и окиси углерода, или восстановительный газ, который можно использовать в металлургии для извлечения железа из руд, в химической промышленности — для производства аммиака и затем азотосодержащих удобрений. При глубокой переработке нефти тоже незаменим водород, который позволяет увеличить «выход» жидкого топлива для автотранспорта, самолетов, дизельных тепловозов. Высокотемпературные реакторы способны наполовину сократить расход природного газа при получении водорода.
Соединение энергии ядерного котла с процессом паровой конверсии метана помогает также решить проблему обеспечения горячей водой и паром рассредоточенных потребителей. Ведь по территории нашей страны разбросаны десятки тысяч поселков и небольших городов, многие удаленные от крупных населенных пунктов промышленные и сельскохозяйственные предприятия.
Паровая конверсия метана предоставляет возможность дальней «хемотермической» передачи энергии от крупного ядерного центра к этим разбросанным объектам. Для этого смесь водорода и окиси углерода охлаждается, отдавая свое тепло поступающим на реакцию метану и воде, и с помощью компрессора передается по газопроводу к месту потребления. Там в присутствии специального катализатора при температуре 400–600 °C проводится обратная реакция — соединение окиси углерода и водорода. При этой реакции выделяется энергия и восстанавливаются исходные вещества — метан и вода. Метан по отдельному газопроводу возвращается на атомную станцию, чтобы снова принять участие в химической реакции, — цикл повторяется. Как видим, тепло от реактора может быть в химически связанном виде передано на любое практически необходимое расстояние.
Колоссальными возможностями обладает ядерная энергетика, но и она не избавлена от недостатков. На Востоке говорят: «Даже роза дает тень». Одна из сложных проблем — где взять топливо для реакторов.