Оценим сначала ее количество, доступное человеку. Ежегодно солнечные лучи доносят до Земли энергию, эквивалентную 50 триллионам тонн топлива, а это в несколько тысяч раз больше, чем потребляет человечество. Но плотность ее на поверхности земного шара невелика — 600–1000 ватт, а в среднем с учетом суточно-годовых колебаний и облачности — всего 150–250 ватт на квадратный метр. Для сравнения: когда домашний чайник стоит на газовой плите, плотность поступающей в него энергии в тысячу раз больше. Другими словами, рассеянные солнечные лучи трудно и потому дорого использовать для получения необходимого тепла и электричества.
Тем не менее заманчиво научиться собирать и утилизировать энергию нашего светила. Ведь Солнце — это неиссякаемый, или, как говорят энергетики, возобновляемый источник энергии. Когда сжигают органическое топливо, извлекаемое из недр, оно не восполняется, а если и возобновляется, то очень медленно, даже по геологическим меркам, тогда как термоядерный реактор у нас над головой будет действовать еще миллиарды лет.
Его лучи не перегревают Землю, являются «недобавляющим» источником энергии. Они не нарушают тепловой баланс всей планеты. Вероятно, это качество окажется важным в перспективе, когда деятельность человека начнет сказываться на тепловом режиме всего земного шара или какого-либо отдельного его региона.
Солнечная топка порождает и поддерживает другие виды возобновляемых энергетических ресурсов, например ветра. Если бы направить все ветры в турбины электрогенераторов, то удалось бы сэкономить 40–80 миллиардов тонн условного топлива в год. Ведь мощность ветрового потока в среднем на планете — больше 500 киловатт на квадратный километр площади.
Приливы и потоки в морях и океанах, если их полностью утилизировать, позволили бы сэкономить около 4 миллиардов тонн условного топлива в год. Зато фотосинтез может дать до 200 миллиардов тонн условного топлива. Из них только на долю лесов приходится около 25 миллиардов тонн.
Энергетическая программа не оставляет в стороне все эти нетрадиционные источники энергии. За их счет намечается производить от 20 до 40 миллионов тонн условного топлива. Примерно столько энергии давали в 1970 году все гидростанции страны.
Предлагается по-разному использовать солнечную топку. Поиск пока идет очень широким фронтом. Уже сегодня нередки солнечные коллекторы для подогрева воды, солнечные фотоэлементы на часах, в космосе. На повестке дня — солнечные орбитальные электростанции и океанские электрогенераторы, эксплуатирующие напор океанских течений или перепад температур на поверхности и в глубине океана.
Наиболее проработан на сегодняшний день традиционный способ получения электричества из солнечного излучения — через разогрев того или иного рабочего тела (теплоносителя). Ядерные и термоядерные котлы действуют по такому же принципу. Нагретый теплоноситель (например, вода) используется затем в паровом цикле преобразования тепла в электроэнергию: котел — пар — турбина — электрогенератор. Солнечная энергия концентрируется зеркалами. Если в фокусе параболического отражателя разместить трубу с теплоносителем, то получится котел, в котором и будет генерироваться пар. В мире уже работает несколько подобных установок.
Однако стоимость параболических зеркал чересчур высока. Чтобы удешевить солнечную энергетику, предлагается несколько путей. Судя по всему, лучший из них — переход на системы башенного типа. Эту идею еще в предвоенные годы выдвинул в нашей стране инженер Н. Алницкий. Ныне башенные станции получили мировое признание. Американцы создали в Барстоу экспериментальную установку мощностью в 10 мегаватт. В Италии у подножия вулкана Этна функционирует «солнечная башня» мощностью в 1 мегаватт.
В СССР недалеко от Керчи сооружена станция мощностью в 5 мегаватт. Вокруг башни концентрическими кругами размещены 1600 зеркал, направляющих солнечные лучи на паровой котел, который венчает 70-метровую башню. Зеркала площадью 25 квадратных метров каждое с помощью автоматики и электроприводов следят за Солнцем и отражают концентрированную солнечную энергию точно на поверхность котла, обеспечивая ее плотность потока в 150 раз большую, чем Солнце на поверхности Земли. В котле при давлении 40 атмосфер генерируется пар с температурой 250 °C, поступающий на паровую турбину. В специальных емкостях-аккумуляторах под давлением содержится горячая вода, накапливающая тепло для работы по ночам и в пасмурную погоду. Благодаря этим аккумуляторам станция может работать еще три-четыре часа после захода Солнца, а на половинной мощности — около полусуток.