Первое решение было неожиданным: активную зону реактора стали охлаждать натрием. Несмотря на то, что натрий сильно окисляется на воздухе и настолько активно взаимодействует с водой, что такая реакция протекает на грани взрыва, все же именно этот теплоноситель выбрали для охлаждения реакторов вначале в СССР, а затем и во всех зарубежных установках. Уж очень привлекательными оказались его свойства. Высокая теплоемкость позволяла сократить его расход и снизить скорость потока, прокачиваемого через активную зону. Высокая теплопроводность его обеспечивала хороший отвод тепла от тепловыделяющих элементов. Его температура кипения и плавления при атмосферном давлении находилась в подходящем диапазоне. Но самым главным и определяющим достоинством, сыгравшим решающую роль при выборе его в качестве охладителя, был достаточно большой его атомный вес 23. Ведь для реактора-размножителя, работающего на быстрых нейтронах, важно отсутствие в его составе вещества с легкими ядрами, эффективно замедляющего нейтроны, иначе часть их будет производить деление плутония уже тепловыми нейтронами, а это весьма нежелательно, так как ухудшает воспроизводство топлива. Нельзя проходить мимо другого факта: при замедлении нейтрона существенно увеличивается и их вредное поглощение.
Как раз те избыточные нейтроны, которые могли быть использованы для получения плутония, исчезают, не принося пользы. Конечно, полностью исключить замедление нейтронов невозможно. Но с увеличением атомного веса элементов, используемых в активной зоне, оно существенно уменьшается.
Для снижения потерь нейтронов используется ряд приемов. Активная зона реактора состоит из 200 так называемых топливных сборок. В каждой сборке находится 170 тепловыделяющих элементов, охлаждаемых потоком натрия. Сборки шестигранной формы. Установлены они впритык одна к другой так, что диаметр активной зоны оказывается равным полутора метрам, а его высота метру. При таком небольшом размере активной зоны из нее вылетает очень большое количество нейтронов, которые могут бесполезно теряться. Чтобы их сохранить, активную зону реактора окружают еще двумя-тремя рядами "кассет" с тепловыделяющими элементами. В -них, правда, нет делящегося топлива, а есть только уран-238, представляющий собой сырье для получения делящихся элементов. В нем и поглощаются нейтроны, вылетающие из активной зоны. При этом создается плутоний. Экраны из того же урана размещены и на торцевых поверхностях цилиндрической активной зоны. Их назначение - также улавливать нейтроны, вылетающие из активной зоны.
Реактор БН-350 при работе в режиме размножения может взамен каждого сожженного в нем килограмма плутония производить из урана-238 полтора килограмма нового плутония. Это достаточно хороший показатель воспроизводства топлива, но пока, к сожалению, только расчетный. На самом деле ь активную зону реактора вместе с ураном-238 пока загружается не плутоний (работа с ним связана с некоторыми сложностями, о которых расскажем несколько позже), а дорогостоящий уран-235. Но поскольку главная задача теперешнего этапа развития реакторов на быстрых нейтронах - это создание атомной станции, конструктивно надежной и работоспособной, эти вопросы могут быть отработаны и с активной зоной, в которую загружен не плутоний, а уран-235. В этом случае воспроизводство топлива, конечно, ухудшается, так как при делении из него вылетает нейтронов меньше, чем при делении плутония. Однако условия работы всего оборудования практически остаются такими, словно в активной зоне вместе с ураном-238 загружен плутоний.
Есть еще одна характеристика реакторов-размножителей на быстрых нейтронах, сильно влияющая на его конструкцию. Создать атомный реактор, в котором каждый сгоревший килограмм загруженного горючего оборачивался бы, скажем, полутора килограммами нового искусственного элемента, дело, кажется, совсем нехитрое. Можно добиться и большего: не полутора, а почти двух килограммов. Это будет очень простой реактор.
Весь вопрос в том, когда мы потребуем от него отдачи, через какое время будут необходимы эти новые полтора килограмма топлива взамен ранее заложенного килограмма. От этого зависит и конструкция реактора, и сложности, которые предстоит преодолевать при его создании и эксплуатации. Понятно, что темпы наработки нового горючего будут определяться и тем, как должна развиваться вся энергетика вообще и атомная энергетика в частности.
Это один из немногих случаев, когда конструкция установки, требования к ней самым прямым образом определяются темпами развития и стоуктурой энергетики.
Темпы. Темпы, Темпы
Если обратиться к прогнозируемым темпам развития мировой энергетики на ближайшие 40-50 лет, то мы увидим, что и тут существуют самые различные мнения.