По состоянию на первое января 1991 г. было проведено 804 огневых испытания общей длительностью 93300 с, в том числе 22 двигателя прошли успешные летные испытания в составе ракет-носителей "Зенит" и "Энергия". В 1991 г. планировалось завершить наземную отработку модификации двигателя РД-170 на ресурс, обеспечивающий десятикратное полетное использование и дальнейшее совершенствование и развитие в направлении повышения мощности, улучшения удельных характеристик.
Существенный шаг вперед был сделан в разработке и реализации качественно новых, научно обоснованных методик и программ экспериментальной отработки двигателя, ориентированной на получение необходимых результатов с максимальной экономией материальной части в максимально сжатые сроки. Особенностями программы экспериментальной отработки являются:
- автономная отработка огневых агрегатов двигателя;
- автономная отработка системы подачи топлива;
- обеспечение максимальной информативности огневых испытаний;
- использование автоматизированных систем обработки результатов;
- многократность ресурсных огневых испытаний, которые составили основу экспериментальной отработки двигателя в штатной комплектации.
Система технической диагностики разрабатывалась параллельно с созданием двигателя как средство оценки техническою состояния двигателя и прогноза его работоспособности. Кроме того, она использовалась для анализа отказов и дефектов, поскольку давала возможность более глубоко исследовать взаимоувязку параметров, их статистические характеристики.
Система представлялась как совокупность технических средств, методов диагностирования и объекта диагностирования, а также организационно-технических мероприятий для сбора, преобразования, хранения, анализа информации и принятия решения о состоянии двигателя. Система должна обеспечивать установление места и причин возникновения неисправностей.
Система технической диагностики имела следующие подсистемы:
- информационно-измерительная;
- фукционного диагностирования;
- тестового диагностирования как неразрушающего метода контроля состояния. Эффективность технической диагностики в части установления граничных значений параметров и характеристик не могла базироваться на статистике испытаний до отказа из-за высокой стоимости двигателей и опасности таких испытаний для стенда. В этой связи важное значение приобрело математическое моделирование. Большой объем информации, сложность математических моделей и алгоритмов обработки обусловили необходимость привлечения мощных универсальных и специализированных вычислительных комплексов.
В ходе разработки системы диагностирования созданы:
- методика контроля стабильности характеристик запуска, основного режима и режима конечной ступени. Методика предназначалась для оценки значений медленно меняющихся параметров и их скоростей, полученных при огневых испытаниях с учетом поля допустимых границ;
- методика допускового контроля параметров на основном режиме и режиме конечной ступени; предназначалась она для оценки соответствия параметров двигателя, измеренных при огневых испытаниях, расчетным значениям, полученным с использованием математических моделей и модельных характеристик агрегатов по их автономным испытаниям, что определяется нахождением параметров в поле допусков;
- методика контурной увязки медленно меняющихся параметров; предназначалась для оценки функционирования двигателя в целом и его контуров на стационарных режимах путем сравнения измеренных и расчетных значений медленно меняющихся параметров в характерных точках;
- методика оценки устойчивости и определения виброакустических характеристик; предназначалась для контроля уровня пульсации и вибраций на соответствие статистическим допускам и оценки устойчивости камеры сгорания и газогенератора, с анализом физической природы спектров и определением декрементов затухания колебаний;
- методика оценки величины выработанного ресурса сборочных единиц; основана она на теории многоцикловой усталости материалов и учитывает динамические нагрузки, вызываемые пульсациями и вибрациями; оценивалось интегральное значение усталостной повреждаемости при контрольно-технологических испытаниях, прогнозировалось ее значение при эксплуатации и их сумма сравнивалась с предельным значением, определяемым по результатам многоресурсовых испытаний;
- методика параметрического контроля - использовалась при диагностировании на стационарных режимах в целях локализации неисправностей; анализ основан на оценках функциональных характеристик агрегатов;
- комплекс неразрушающих методов контроля.
По результатам оценки эффективности систем диагностики отмечено, что все же в ряде случаев имели место отказы двигателей при повторных испытаниях, хотя система не указывала на их предпосылки. Были реализованы меры по усовершенствованию системы и эти случаи были исключены. В результате было определено, что риск поставщика и риск заказчика составлял 0,03 при доверительной вероятности 0,95.