По результатам проведенных исследований впервые в практике отечественного двигателестроения разработаны:
- смесительная головка камеры на основе двухкомпонентных соосно-струйных форсунок, имеющая огневое днище с высокоэффективным транспирационным охлаждением, а также обеспечивающая малорасходную локальную завесу для исключения местных перегревов внутренней стенки цилиндра. Обеспечена высокочастотная устойчивость рабочего процесса в камере в широком диапазоне изменения режимов работы двигателя по тяге и соотношению компонентов. Достигнуто близкое к предельному совершенство смесеобразования;
- регенеративная система охлаждения внутренних стенок камеры. Обеспечено надежное охлаждение внутренних стенок камеры при ресурсах более 2500
- смесительная головка газогенератора на основе струйно-центробежных и соосно-струйных в периферийном ряду двухкомпонентных форсунок, обеспечивающая с выравнивающей решеткой при высокой расходонапряженности и ограниченной длине цилиндра газогенератора допустимую неравномерность температурного поля газа на выходе из генератора. Подтверждена высокочастотная устойчивость рабочего процесса в газогенераторе в широком диапазоне изменения режимов работы двигателя.
Опыт создания высокоэффективных жидкостных ракетных двигателей с дожиганием генераторного газа показывает, что одним из важнейших условий их успешной доводки является обеспечение работоспособности турбонасосных агрегатов. При работе турбонасосных агрегатов кислородно-водородных двигателей появляются дополнительные проблемы, связанные со значительным увеличением мощности агрегата из-за низкой плотности водорода, недостаточной стойкостью конструкционных материалов в водороде, склонностью к разгару кислородных насосов высокого давления. Кроме того, к турбонасосным агрегатам предъявлены требования обеспечения повышенного ресурса, многократности включений и высокой степени герметичности на стоянке.
В результате проведенного комплекса расчетно-экспериментальных работ созданы конструкции основного и бустерного насосных агрегатов с высокими удельными параметрами, не имеющие аналогов в отрасли и не уступающие по основным параметрам агрегатам современных двигателей.
В процессе разработки агрегатов решен ряд конкретных проблемных вопросов.
Для обеспечения необходимого напора потребовалось разработать крыльчатки, работоспособные при окружных скоростях 600 м/с, что в 1,7 раза превышает достигнутый в насосостроении уровень.
Для решения проблемы разработано и испытано в водороде пять вариантов конструкций крыльчаток, созданы и методики испытаний.
Создана крыльчатка из титанового сплава ВТ5-1КТ, заготовка изготавливается по гранульной технологии. Разрушающая окружная скорость 886 - 928
В отечественном двигателестроении до разработки турбонасосного агрегата двигателя второй ступени ракеты "Энергия" не было опыта применения закритических роторов в жидкостных ракетных двигателях.
Для обеспечения устойчивости ротора турбонасосного агрегата двигателя выполнен комплекс расчетных и экспериментальных работ, разработана методика высокочастотной балансировки (до 33000 об/мин.). Созданы упругодемпферные опоры, обеспечивающие необходимое демпфирование и переход критических частот вращения с минимальными нагрузками на подшипнике.
При обеспечении работоспособности основного и бустерных кислородных насосов основным вопросом явилось исключение возгорании конструкции при высоких давлениях среды (до 600
Применительно к основному турбонасосному агрегату разработаны и внедрены новые технологии:
- термодиффузионное сращивание крупногабаритных деталей - обратные направляющие аппараты турбонасосного агрегата;
- ультразвуковой метод контроля усилий затяжки крепежных деталей;
- отливка высокоточных крупногабаритных деталей;
- высокотемпературная газостатическая обработка отливок;
- упрочнение поверхностного слоя деталей дробеструйной обработкой микрошариками;
- электроэрозионная обработка лопаток турбин пространственного профиля;