Работа нашего организма начинается с его структурной единицы — клетки, где есть все необходимое для жизнедеятельности: переработки и потребления продуктов, превращения веществ в энергию, выделения отработанных веществ. Однако процесс получения энергии и использование ее в клетке продолжает рассматриваться современной наукой с точки зрения химических законов, согласно которым скорость протекающих реакций не должна превышать 1хЮ6
с-1. Последнее означает, что в живой клетке не может быть квантовых взаимоотношений, протекающих с огромными скоростями. Вместе с тем имеется много данных, что процессы биоокисления у нас заканчиваются не образованием аденозинтрифосфорной кислоты (АТФ), а возникновением высокочастотного электромагнитного поля и ионизированного протонного излучения.Оригинальное мнение по этому поводу с точки зрения биофизических процессов, происходящих в организме, высказал блестящий хирург Божьей милостью Георгий Николаевич Петракович. Как он доказал, клетка способна даже вырабатывать кислород и энергию за счет свободнорадикального окисления насыщенных жирных кислот. Но для этого она должна получить энергетическое возбуждение, которое обеспечивается эритроцитами крови.
Известно, что молекула эритроцита имеет отрицательный заряд. Вырабатываемый в процессе биоэнергетической реакции в мембране эритроцита электрон захватывает входящий в состав гемоглобина атом железа — в этом причина того, что в циркулирующей крови железо всегда двухвалентно. Другая часть «наработанных» электронов расходуется на заряд всего эритроцита. Величина этих зарядов у разных эритроцитов разная в зависимости от их возраста и нормального состояния. Удивительно, что имеющий диаметр в 3—4 раза больше капилляра эритроцит все-таки проходит по нему. Дело в следующем.
Под давлением крови в капиллярах, как в очереди, собираются «монетные столбики» (под микроскопом они действительно напоминают сложенные столбиками монетки) эритроцитов. Так как они имеют форму двояковогнутой линзы, то в пространстве между ними в легких находится жировоздушная смесь, а в клетках — кислородно-жировая пленка. В аэробных (кислородных) условиях свободнорадикальное окисление насыщенных жирных кислот клеточных мембран происходит как обычное горение, в результате чего образуется вода, углекислый газ и тепло.
Помимо этого, в анаэробных условиях (недостаток кислорода) здесь же происходит реакция с образованием кетоновых тел (ацетон, альдегиды), спиртов, в том числе этилового, происходит омыление жиров поверхностно-активных веществ, так называемых сурфактантов.
Так вот, при создании давления в капиллярах между эритроцитами происходит взрыв-вспышка, как в двигателе внутреннего сгорания. Свечой здесь служит атом железа, переходящий из двухвалентного в трехвалентный, а если учесть, что в состав одной молекулы гемоглобина входит только 4 атома железа, а их в одном эритроците около 400 миллионов, то можете себе представить, какова сила взрыва. Но это не приносит вреда, так как все происходит на молекулярном, атомарном уровне и в малом пространстве.
Физики доказали: на движущуюся в электромагнитном поле заряженную частицу действует сила Лоренца, которая закручивает траекторию движения, в частности эритроцита, расширяя при этом микрокапилляры и заставляя его протискиваться в отверстие, которое в 3—4 раза меньше самого эритроцита.
Эта сила тем мощнее, чем выше заряд эритроцита и мощнее магнитное поле, за счет чего улучшаются обменные процессы в тканях и быстрее устраняются патологические процессы.
Под влиянием вспышки в легких происходит стерилизация воздуха, выделяется вода, поддерживается температура тела. В момент остановки «монетного столбика» и сжатия эритроцита в капилляре в результате взрыва происходит выброс электронной и тепловой энергии и свободнорадикальное окисление продуктов с помощью кислорода, находящегося в межтканевой жидкости.
При этом освобождаются «окна» в мембранах клеток, куда устремляется натрий (за счет разницы концентрации вне и внутри клетки), протаскивая за собой кислород, воду и все растворенные в ней вещества.
Но самым главным в этом процессе является то, что концентрации молекулярного кислорода и углекислоты должны быть в пределах величин, приведенных в таблице. Если кислорода больше, конечно, за счет уменьшения углекислоты, то наступает спазм капилляров, что приводит к нарушению обеспечения тканей всем необходимым и удаления отходов, то есть наступают вначале функциональные, а затем и патологические изменения.
Так как клеткам практически всегда не хватает кислорода, человек начинает глубоко дышать, но излишек атмосферного кислорода — это не благо, а причина образования тех же свободных радикалов.
Возбужденные от недостатка кислорода атомы клеток, вступая в биохимические реакции со свободным молекулярным кислородом, как раз способствуют образованию свободных радикалов, имеющих на своей орбите неспаренный электрон.