Подтверждение тому было впервые получено в 50-х годах XIX века, когда химики научились синтезировать не просто вещества, идентичные выделяемым из живой ткани, но и множество других веществ с крупными молекулами, состоящими из углерода, водорода и других элементов, — вещества в природе не встречающиеся. Эти вещества, не являясь частью ни одной живой ткани на Земле, вели себя точно так же, как и природные, — легко воспламенялись, оказались капризно-нестабильными и во всех остальных отношениях — тоже «органическими».
Постепенно, ближе к концу XIX века, разграничение между органическими и неорганическими веществами перестало быть привязанным к фактору «живое — неживое» и стало основываться исключительно на химических свойствах. Поскольку в конце концов стало понятно, что возможность для создания огромных органических молекул кроется в неких особых свойствах углерода, то самым простым критерием отделения органической химии от неорганической стало наличие углерода в молекулах изучаемого вещества.
Кажется, что такое деление несправедливо, да так оно, собственно, и есть на самом деле, но не в том отношении, которое впервые приходит в голову. Способность углерода вступать в неограниченно большое количество соединений приводит к тому, что веществ, имеющих в своем составе углерод, обнаруживается гораздо больше, чем веществ, его лишенных, и с каждым годом этот разрыв все увеличивается.
Разобравшись, в первом приближении, с химическим составом пищи, теперь мы можем правильно истолковать все количественные измерения касательно дыхания.
К примеру, Лавуазье, чья величайшая заслуга перед химией состоит в первую очередь в том, что он всегда настаивал на проведении точных измерений, был первым, кто попытался установить точное количество вдыхаемого кислорода и выдыхаемого углекислого газа. Приборов, которые позволили бы ученому получить точные результаты, у него еще не было, но даже если бы Лавуазье их и получил, то сделать с ними все равно бы ничего не смог — разве что записать.
Сейчас же, после того как стал известен состав молекул веществ, обнаруживаемых в пище, можно сделать определенные выводы относительно исчезающего кислорода и появляющегося взамен него углекислого газа. Предположим, например, что глюкоза — это горючее и мы сжигаем его на огне. Тогда уравновешенное выражение для соединения глюкозы и кислорода будет выглядеть так:
Из этого выражения (которое невозможно было составить до того, как была установлена формула глюкозы) видно, что на каждый моль используемой глюкозы тратится шесть молей кислорода и производится шесть молей углекислого газа. На каждый моль одного, потребляемого, газа производится один моль другого газа. Поскольку один моль любого газа занимает один и тот же объем, то можно сказать, что на каждый литр одного газа получается один литр другого. В данном случае — на каждый литр потребляемого кислорода производится один литр углекислого газа.
Таким образом, отношение производимого углекислого газа к потребляемому кислороду — 1: 1, то есть 1. Лавуазье и прочие ученые интересовались этим отношением именно в связи с дыханием, так что эту величину назвали «коэффициентом дыхания», и мы говорим, что коэффициент дыхания глюкозы (да и вообще углеводов в целом) — 1.
С жирами ситуация иная. Общая формула типичной жировой молекулы — С57
Н104О6, и уравновешенное выражение для соединения ее с кислородом выглядит так:То есть на 80 молей потребляемого кислорода производится 57 молей углекислого газа. Значит, коэффициент дыхания жиров — 57
/80, или 0,713. Коэффициент дыхания белков больше, чем у жиров, но меньше, чем у углеводов. Округленные цифры выглядят так:Коэффициент дыхания углеводов = 1
К. д. белков = 0,8
К. д. жиров = 0,7
Каким же образом мы можем теперь применить эти чисто химические соображения к явлениям живой природы? Ответ на этот вопрос был дан в 1849 году, когда два французских химика, Анри Виктор Реньо и Жюль Рейзе, разработали камеру, куда можно было помещать животных и запускать кислород в строго определенном количестве. Углекислоту, выдыхаемую этими животными, тоже можно было собирать, абсорбировать с помощью определенных химических веществ и взвешивать. Таким образом, ученые смогли измерить и объем вдыхаемого животными кислорода, и объем выдыхаемого углекислого газа. Иными словами, у них получался общий коэффициент дыхания животного, и ученые измерили его для самых разных живых существ — от червяков до собак.
У Реньо и Рейзе получилось, что коэффициент дыхания живых организмов лежит между 0,7 и 1. Более того, в этих пределах он изменялся в зависимости от предоставляемой животному пищи. Если диета животного была по преимуществу углеводной, то и коэффициент дыхания приближался к единице; при преимущественно жировой диете он опускался до 0,7.