Читаем Энциклопедический словарь (Г-Д) полностью

где А1, А2, А3, А, В1,:С суть какие-либо сплошные функции времени, выражают деформации, называемые однородными. Они имеют следующие свойства; 1) всякие две взаимноподобные и подобно расположенные фигуры, начерченные в теле в какой-либо момент, изменяя при однородной Д. свой вид, размеры и положение в пространстве, будут все-таки сохранять свое взаимное подобие, причем центром подобия будет все время служить та самая точка тела, которая была им в начале; 2) плоскости и прямые не искривляются; 3) представим себе неизменяемую среду, движущуюся поступательно вместе с которою-либо из точек тела; пусть это будет точка К; проведем через нее координатные оси, параллельные неподвижным и неизменно связанные с этою средою; назовем через x', h', z' начальные координаты прочих точек тела относительно этих осей, а через х', у', z' координаты их в момент t; тогда окажется, что относительное движение деформируемого тела по отношению к неизменяемой среде выразится уравнениями:

Вид этих уравнений не зависит от выбора точки К; значит, если вокруг двух различных точек тела выделить одинаковые по виду, размерам и положению объемы вещества, то Д. этих двух объемов будут тожественны и выразятся одними и теми же уравнениями (F). Таким образом А, В, С представляют поступательное движение тела, а остальные члены вторых частей равенств (Е), или вторые части равенств (F), выражают однородную Д. вокруг всякой точки тела. При однородной Д., выражаемой уравнениями: х = Е1x, у = Е2h, z = Е3z, все точки, находившиеся в начальный момент в плоскостях координат и на осях координат, остаются при Д. на тех же плоскостях и осях; такая однородная Д. может быть рассматриваема как результат трех однородных удлинений или сжатий параллельно этим осям; каждая единица длины, параллельная оси х-ов, удлиняется при этом на величину e1 = Е1 – 1; соответственные удлинения единиц длины параллельных прочим двум осям будут: e2 = Е2 – 1, e3 = Е3 – 1, а кубичное расширение единицы объема вещества равняется q = Е1Е2Е3 – 1.

При всякой однородной Д. можно найти три такие взаимно ортогональные направления. которые хотя и изменяются в пространстве, но все-таки остаются взаимно ортогональными, так что, вообще говоря, Д. сопровождается вращением. Эти направления называются главными осями однородных Д. Если вращения нет, то направления главных осей остаются неизменными, и тогда однородная Д. называется чистою. Д. х = Е1x, у = Е2h, z = Е3z есть чистая Д., главные оси которой параллельны осям координат. Если составить уравнения чистой Д., главные оси которой не параллельны осям координат, то окажется, что в этих уравнениях коэффициент В1 тожественен с А2, С1, с А3, и С2 с В3.

Примером однородной Д., сопровождаемой вращением, может служить так называемый сдвиг, напр. параллельно плоскости уz, выражающийся следующими уравнениями:

х = x, у = gx + h, z = z.

При этой Д. плоскость уz остается неподвижною; все плоскости ей параллельные сдвигаются параллельно оси у-ов на длины, пропорциональные их расстояниям от нее (т. е. пропорциональные x), причем прямые, первоначально параллельные оси х-ов, становятся наклонными к ней под углом, тангенс которого равен g. В момент t = 0 главная ось наибольшего расстояния составляет с положительною осью х-ов угол и угол с положительною осью у-ов; другая главная ось (ось наибольшего сжатия) к ней перпендикулярна, третья главная ось параллельна оси z-ов и сохраняет свое направление. Д. сопровождается вращением вокруг оси z-ов на угол y где tgy равен половине g. Если произвести один за другим два сдвига одинаковой величины, один только что упомянутый, а другой параллельно плоскости zх по направлению оси х (с таким же коэффициентом g), то в результате, этих двух сдвигов получится так называемый двойной сдвиг в плоскости ху, это – чистая Д. и величина 2g называется коэффициентом такого двойного сдвига.

Теория однородных Д. играет существенную роль в гидродинамике и теории упругости, так как там рассматриваются такие Д. тел, при которых вокруг каждой точки тела, в ближайшем соседстве ее, совершаются относительные Д. однородные и ничтожно малые. т. е. такие, у которых коэффициенты A2, В2, С3, разнятся от единицы на ничтожно малые величины, а коэффициенты А2, А3, В1, В3, C1 и С2, ничтожно малы. Поэтому теорию таких Д. можно найти в соч. по выше сказанным предметам, напр.: «Kirchhoff's» Vorlesungen uber mathematische Physik"; Ibbetson, «Treatise on the mathematical Theory af perfectly elastic solids»; Thomson and Tait, «Treatise on natural Philosophy» и т. д. Из числа неоднородных Д. должно упомянуть о подобноизменяющей Д. и коллинеарной Д., которых теории разрабатываются некоторыми авторами за границею и у нас (проф. П. И. Сомов, Д. Н. Зейлигер). Примером неоднородной, но еще сравнительно простой Д., может служить движение жидкости, выражаемое следующими уравнениями:

х = x, z = z,

Перейти на страницу:

Все книги серии Словарь Брокгауза и Ефрона

Похожие книги

100 знаменитых харьковчан
100 знаменитых харьковчан

Дмитрий Багалей и Александр Ахиезер, Николай Барабашов и Василий Каразин, Клавдия Шульженко и Ирина Бугримова, Людмила Гурченко и Любовь Малая, Владимир Крайнев и Антон Макаренко… Что объединяет этих людей — столь разных по роду деятельности, живущих в разные годы и в разных городах? Один факт — они так или иначе связаны с Харьковом.Выстраивать героев этой книги по принципу «кто знаменитее» — просто абсурдно. Главное — они любили и любят свой город и прославили его своими делами. Надеемся, что эти сто биографий помогут читателю почувствовать ритм жизни этого города, узнать больше о его истории, просто понять его. Тем более что в книгу вошли и очерки о харьковчанах, имена которых сейчас на слуху у всех горожан, — об Арсене Авакове, Владимире Шумилкине, Александре Фельдмане. Эти люди создают сегодняшнюю историю Харькова.Как знать, возможно, прочитав эту книгу, кто-то испытает чувство гордости за своих знаменитых земляков и посмотрит на Харьков другими глазами.

Владислав Леонидович Карнацевич

Неотсортированное / Энциклопедии / Словари и Энциклопедии