Все числа, не являющиеся алгебраическими, называют трансцендентными. Очевидно, что все трансцендентные числа иррациональны. Трансцендентно число π=3,1415926..., играющее важнейшую роль в математике. Отсюда вытекает, в частности, невозможность «квадратуры круга» (см. Классические задачи древности). Трансцендентно и число
ЭКСТРЕМУМ ФУНКЦИИ
Рассмотрим два зубца хорошо всем известного профиля пилы. Направим ось Ox вдоль ровной стороны пилы, а ось Oy - перпендикулярно к ней. Получим график некоторой функции, изображенный на рис. 1.
Рис. 1
Совершенно очевидно, что и в точке a1
, и в точке a2 значения функции оказываются наибольшими в сравнении со значениями в соседних точках справа и слева, а в точкеУточним определение экстремума.
Говорят, что функция f(x) в точке x0
имеет максимум, если найдется интервал, содержащий точку x0 и принадлежащий области определения функции, такой, что для всех точек x этого интервала оказываетсяНа рис. 2 и 3 приведены графики функций, имеющие в точке x=0 экстремум.
Рис. 2
Рис. 3
Обратим внимание на то, что по определению точка экстремума должна лежать внутри промежутка задания функции, а не на его конце. Поэтому для функции, изображенной на рис. 1, нельзя считать, что в точке b1
она имеет минимум.Если в данном определении максимума (минимума) функции заменить строгое неравенство на нестрогое
Рис. 4
В дифференциальном исчислении исследование функции на экстремумы очень эффективно и достаточно просто осуществляется с помощью производной. Одна из основных теорем дифференциального исчисления, устанавливающая необходимое условие экстремума дифференцируемой функции, - теорема Ферма (см. Ферма теорема). Пусть функция f(x) в точке x0
имеет экстремум. Если в этой точке существует производнаяНа геометрическом языке теорема Ферма означает, что в точке экстремума касательная к графику функции горизонтальна (рис. 5). Обратное утверждение, разумеется, неверно, что показывает, например, график на рис. 6.
Рис. 5
Рис. 6
Теорема названа в честь французского математика П. Ферма, который одним из первых решил ряд задач на экстремум. Он еще не располагал понятием производной, но применял при исследовании метод, сущность которого выражена в утверждении теоремы.
Достаточным условием экстремума дифференцируемой функции является смена знака производной. Если в точке x0
производная меняет знак с минуса на плюс, т.е. ее убывание сменяется возрастанием, то точка x0 будет точкой минимума. Напротив, точка x0 будет точкой максимума, если производная меняет знак с плюса на минус, т.е. переходит от возрастания к убыванию.Точка, где производная функции равна нулю, называется стационарной. Если исследуется на экстремум дифференцируемая функция, то следует найти все ее стационарные точки и рассмотреть знаки производной слева и справа от них.
Исследуем на экстремум функцию
Найдем ее производную:
Определяем стационарные точки:
Рис. 7
Находим значения функции в точках экстремума:
Рис. 8
Заметим, что возможны случаи, когда экстремум достигается в точке, в которой производная не существует. Таковы точки экстремума у профиля пилы, пример такой функции дан и на рис. 1.