Трудности доказательства истины больше всего связаны с ценностью или значимостью различий сравниваемых моделей, которые определяются активностью критериев-чувств, имеющих связи с моделью. Универсальный интеллект всегда многокритериальный, но соотношение критериев различно у разных интеллектов в зависимости от исходной «закладки» и от самоорганизации в процессе деятельности.
6. Практика всегда критерий истины.
Но для простых систем применение этого критерия достаточно просто, для сложных — не так. Практика проверки моделей сложных систем — это использование их для управления. Заведомо ложное обнаруживается быстро — и модель отпадает. Но я уже говорил, что для сложной системы можно создать бесконечное множество моделей. Одни будут более, другие — менее удачны. Преимущества должны выявиться при управлении с их помощью. Здесь и начинаются трудности.Каковы критерии эффективности управления? Если не гибель, то жизнь, но какая? Сложные системы имеют много программ, идущих параллельно, их соотношение может меняться, и как доказать, какая «жизнь» лучше? И кому доказывать? Преимущества одной модели нужно доказывать приверженцам другой модели, у которых — свои представления о значимости тех или иных проявлений жизни, критериев эффективности управления системой. Если к этому добавить, что самые сложные системы изменяются и развиваются очень медленно и поэтому результаты управления могут сказаться поздно, то вопрос о доказательствах истины становится еще более запутанным.
7. Невозможно точно моделировать сложные системы «типа живых»
, потому что они (сложные системы) связаны как с вышестоящими, так и с нижестоящими. Поскольку им присуща самоорганизация, то динамику можно представить только с учетом воздействий со стороны внешней среды («сверху») и специфики (тоже самоорганизации) элементов данной системы.Для иллюстрации трудностей можно привести несколько примеров зависимостей, без учета которых нельзя познать связанные друг с другом объекты:
Если сделать подстановки, то получим еще более сложные зависимости:
Для познания истины, т. е. адекватного моделирования, прежде всего нужны методы исследования объекта: определение структуры и функции как целого, так и частей — все более и более мелких. Для каждого уровня структурной сложности нужны свои методы исследования, которые в основном сводятся к выделению и измерению комплекса сигналов.
В методах исследования долго господствовал аналитический подход: разложение на части и их наблюдение. Однако скоро выявилась недостаточность чистого анализа: важен не только сигнал с одного элемента, но и его отношение с другими. Для этого уже нужен синтез
: исследование одновременно многих элементов, чтобы выявить их зависимости. При этом требуется не только многоканальная измерительная техника, но и гипотеза — что измерять, поскольку в любой сложной системе имеется такое количество структурных частей разной иерархии сложности, что охватить их измерениями немыслимо.