Читаем Энциклопедия «Биология». Часть 1. А – Л (с иллюстрациями) полностью

Начало клеточной инженерии относят к 1960-м гг., когда возник метод гибридизации соматических клеток. К этому времени были усовершенствованы способы культивирования животных клеток и появились способы выращивания в культуре клеток и тканей растений. Соматическую гибридизацию, т.е. получение гибридов без участия полового процесса, проводят, культивируя совместно клетки различных линий одного вида или клетки различных видов. При определённых условиях происходит слияние двух разных клеток в одну гибридную, содержащую оба генома объединившихся клеток. Удалось получить гибриды между клетками животных, далёких по систематическому положению, напр. мыши и курицы. Соматиче-ские гибриды нашли широкое применение как в научных исследованиях, так и в биотехнологии. С помощью гибридных клеток, полученных от клеток человека и мыши и человека и китайского хомячка, была проделана важная для медицины работа по картированию генов в хромосомах человека. Гибриды между опухолевыми клетками и нормальными клетками иммунной системы (лимфоцитами) – т.н. гибридомы – обладают свойствами обеих родительских клеточных линий. Подобно раковым клеткам, они способны неограниченно долго делиться на искусственных питательных средах (т.е. они «бессмертны») и, подобно лимфоцитам, могут вырабатывать моноклональные (однородные) антитела определённой специфичности. Такие антитела применяют в лечебных и диагностических целях, в качестве чувствительных реагентов на различные органические вещества и т.п.

При гибридизации соматических клеток растений их предварительно освобождают от плотной клеточной оболочки, а затем проводят слияние изолированных протопластов. В этом случае, как и при гибридизации клеток животных, также удаётся преодолевать барьеры нескрещиваемости, которые существуют при обычной (половой) гибридизации растений разных видов и родов. Из гибридной растительной клетки на специальной среде можно вырастить клеточную массу – каллюс, дифференцирующуюся в нормальное целое растение с корнями, стеблями и т.д. Такое гибридное растение можно высадить в землю и выращивать и размножать обычными способами. Эти методы, в отличие от традиционных, позволяют сравнительно легко и быстро получать достаточное количество генетически разнообразного исходного материала для селекции. Их применение привело, напр., к увеличению урожайности ряда культур – картофеля, цитрусовых и др.

Другое направление клеточной инженерии – манипуляции с безъядерными клетками, свободными ядрами и другими фрагментами, сводящиеся к комбинированию разнородных частей клетки. Эти эксперименты, а также микроинъекции в клетку хромосом, красителей и т.п. проводят для выяснения взаимных влияний ядра и цитоплазмы, факторов, регулирующих активность генов, и т.п.

Путём соединения клеток разных зародышей на ранних стадиях их развития выращивают мозаичных животных, или химер, состоящих из двух различающихся генотипами видов клеток. С помощью таких экспериментов изучают процессы дифференцировки клеток и тканей в ходе развития организма.

Ведущиеся уже не одно десятилетие опыты по пересадке ядер соматических клеток в лишённые ядра (энуклеированные) яйцеклетки животных с последующим выращиванием зародыша во взрослый организм с кон. 20 в. получили широкую известность как клонирование животных.

Преимущество клеточной инженерии в том, что она позволяет экспериментировать с клетками, а не с целыми организмами. Последнее гораздо сложнее, а иногда и невозможно, особенно в случае млекопитающих животных и человека или при получении отдалённых гибридов. Методы клеточной инженерии в медицине, сельском хозяйстве или биотехнологии часто применяют в сочетании с генной инженерией.


КЛЕ́ТОЧНАЯ МЕМБРА́НА (цитоплазматическая мембрана), структура, отделяющая цитоплазму клетки от внешней среды, а у растительных клеток – от клеточной оболочки. Она имеет толщину 8—12 нм и состоит из 3 слоёв. Мембрана обладает избирательной проницаемостью (полупроницаемостью): пропускает в клетку воду, ионы, питательные вещества, а из клетки – продукты обмена; при этом высокомолекулярные вещества через мембрану не проходят. Таким образом, клеточная мембрана регулирует транспорт веществ в клетку и из клетки. Кроме того, различные соединения и твёрдые частицы могут поступать в клетку путём пиноцитоза и фагоцитоза. У большинства клеток мембрана имеет микроворсинки, выросты, выпячивания и впячивания. Только у эритроцитов мембрана гладкая. В случае любого повреждения (нарушения целостности) мембраны клетка погибает. В формировании клеточной мембраны участвуют эндоплазматическая сеть и аппарат Гольджи.


Перейти на страницу:

Все книги серии Современная иллюстрированная энциклопедия

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии