Начало клеточной инженерии относят к 1960-м гг., когда возник метод гибридизации соматических клеток. К этому времени были усовершенствованы способы культивирования животных клеток и появились способы выращивания в культуре клеток и тканей растений. Соматическую гибридизацию, т.е. получение
При гибридизации соматических клеток растений их предварительно освобождают от плотной клеточной оболочки, а затем проводят слияние изолированных протопластов. В этом случае, как и при гибридизации клеток животных, также удаётся преодолевать барьеры нескрещиваемости, которые существуют при обычной (половой) гибридизации растений разных видов и родов. Из гибридной растительной клетки на специальной среде можно вырастить клеточную массу – каллюс, дифференцирующуюся в нормальное целое растение с корнями, стеблями и т.д. Такое гибридное растение можно высадить в землю и выращивать и размножать обычными способами. Эти методы, в отличие от традиционных, позволяют сравнительно легко и быстро получать достаточное количество генетически разнообразного исходного материала для селекции. Их применение привело, напр., к увеличению урожайности ряда культур – картофеля, цитрусовых и др.
Другое направление клеточной инженерии – манипуляции с безъядерными клетками, свободными ядрами и другими фрагментами, сводящиеся к комбинированию разнородных частей клетки. Эти эксперименты, а также микроинъекции в клетку хромосом, красителей и т.п. проводят для выяснения взаимных влияний ядра и цитоплазмы, факторов, регулирующих активность генов, и т.п.
Путём соединения клеток разных зародышей на ранних стадиях их развития выращивают мозаичных животных, или химер, состоящих из двух различающихся генотипами видов клеток. С помощью таких экспериментов изучают процессы
Ведущиеся уже не одно десятилетие опыты по пересадке ядер соматических клеток в лишённые ядра (энуклеированные) яйцеклетки животных с последующим выращиванием зародыша во взрослый организм с кон. 20 в. получили широкую известность как
Преимущество клеточной инженерии в том, что она позволяет экспериментировать с клетками, а не с целыми организмами. Последнее гораздо сложнее, а иногда и невозможно, особенно в случае млекопитающих животных и человека или при получении отдалённых гибридов. Методы клеточной инженерии в медицине, сельском хозяйстве или биотехнологии часто применяют в сочетании с
КЛЕ́ТОЧНАЯ МЕМБРА́НА
(цитоплазматическая мембрана), структура, отделяющая цитоплазму клетки от внешней среды, а у растительных клеток – от клеточной оболочки. Она имеет толщину 8—12 нм и состоит из 3 слоёв. Мембрана обладает избирательной проницаемостью (полупроницаемостью): пропускает в клетку воду, ионы, питательные вещества, а из клетки – продукты обмена; при этом высокомолекулярные вещества через мембрану не проходят. Таким образом, клеточная мембрана регулирует транспорт веществ в клетку и из клетки. Кроме того, различные соединения и твёрдые частицы могут поступать в клетку путём