Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

Эйлер (1707-1783) — швейцарский математик и физик. Речь идет о главном математике XVIII века и одном из самых великих математиков всех времен. Эйлер долгие годы жил в России, где был почетным гостем Екатерины I и ее придворных (в то время в России существовала традиция приглашать наиболее крупных ученых в Академию наук). Эйлер осуществил важные открытия в таких областях, как вычисления, или теория графов (графы — это математическая модель множества узлов и их соединений с помощью ребер, ориентированных либо нет; они имеют широкое применение для представления сети дорог или планов городов). Эйлер также ввел значительную часть современной терминологии и математических обозначений, например понятие математической функции. Он определил число е, одну из самых используемых констант, породившую натуральные логарифмы. Также Эйлер известен своими работами в области механики, оптики и астрономии. Он входит в число наиболее плодовитых ученых: полное собрание его сочинений могло бы занять от 60 до 80 томов. И действительно, даже через 50 лет после смерти математика Петербургская академия наук все еще публиковала статьи Эйлера, хранящиеся в ее архивах. Лаплас, говоря о влиянии ученого на последующих математиков, заметил: «Читайте Эйлера, читайте Эйлера, он учитель всех нас».

В ту эпоху превалировала мысль о том, что числа -- это объекты, которые можно складывать и умножать, но не изображать. И потребовалось 50 лет для того, чтобы Гаусс решился открыть коллегам графические леса, которыми он воспользовался в диссертации. Эта теорема так захватила Гаусса, что он нашел еще три ее доказательства. Второе возникло через год после защиты, и оно дополняло некоторые пропуски первоначального варианта. Третье доказательство, выдвинутое в 1815 году, было основано на идеях Эйлера, в нем не применяются геометрические положения, и это первая серьезная попытка чисто алгебраического доказательства с открытым использованием комплексных чисел. Тут же Гаусс критикует попытки других математиков, основанные на аналитических методах. Последнее доказательство было получено в 1849 году, в связи с 50-летием докторской диссертации. Оно очень похоже на первое, но в этот раз Гаусс приводит все геометрические рассуждения. Чтобы понять важность диссертации Гаусса, достаточно отметить, что доказательство теоремы повергло в прах Эйлера, Лагранжа и Лапласа — трех величайших математиков в истории.

На основе работ Гаусса можно было подступиться к поиску корней многочлена любой степени. Для уравнений до пятой степени (n = 5) были найдены формулы нахождения корней с помощью коэффициентов самого многочлена, что называется решением в радикалах. Формулы были того же типа, что мы использовали для решения уравнений второй степени, однако для уравнений пятой степени их никак не могли найти. Решение нашлось у очень молодого французского математика Эвариста Галуа (1811-1832), который погиб в результате дуэли, едва ему исполнился 21 год. Галуа доказал, что невозможно решить уравнения пятой степени с помощью коэффициентов самого многочлена, и нашел альтернативные методы нахождения корней, пользуясь результатами Гаусса.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг