Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

но по результату Эйлера мы знаем, что сумма ряда конечна и на самом деле она равна ^2/6, поэтому расстояние, которое должен пробежать Ахиллес, также конечно. Более того, расстояние, которое он пробегает до того, как догнать черепаху, — обозначим его через d — равно

d=(1/2+^2/6) · D

Если мы выполним вычисления, получится, что d 2,144 · D. Действительно, можно вычислить, что расстояние, которое пробегает Ахиллес, чтобы догнать черепаху, при его двойной скорости равно d = 2D.

Дзета-функция, которой пользовался Эйлер, — это действительная функция с действительным значением, то есть для действительного значения мы получаем результат, который также является действительным значением. Например, мы знаем, что

Благодаря этому можно изобразить функцию в виде графика на плоскости, которую математики обозначают R^2. Когда мы меняем область определения функции, то есть множество, в котором она принимает значения, на множество комплексных чисел, результат функции также становится комплексным числом. Если мы сочтем, как это сделал Эйлер, что комплексное число a + bi может быть представлено как пара (a, b) е R^2, и то же самое справедливо для ( + bi), которое также является комплексным числом, то получается, что его графическое представление должно осуществляться в R4, то есть в пространстве из четырех измерений. Построение графиков в пространствах из четырех измерений нам недоступно, однако Риман смог вообразить эту функцию в четырех измерениях и понял, что существует связь между простыми числами и нетривиальными нулями функции, то есть теми, действительная часть которых лежит строго между 0 и 1.

ЗАДАЧИ ТЫСЯЧЕЛЕТИЯ

Отмечая наступление нового тысячелетия, Институт Клэя выбрал семь математических задач, которые устояли перед всеми попытками их решения. Это было сделано в подражание Давиду Гильберту, который за 100 лет до этого определил перечень из 23 задач, ставших ориентиром для всех математиков XX века. Единственная задача, которая включена в оба списка, — это гипотеза Римана. Задачи тысячелетия охватывают самые важные области математики. Их перечень выглядит так.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг
До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное