Происхождение фермента | Фермент | КФ |
Адсорбированные панкреатические ферменты | Амилаза | 3.2.1.1 |
Липаза | 3.1.1.3 | |
Трипсин | 3.4.21.4 | |
Химотрипсин | 3.4.21.1 | |
Карбоксипептидаза А | 3.4.12.2 | |
Карбоксипептидаза В | 3.4.12.3 | |
Эластаза | 3.4.21.11 | |
Рибонуклеазэ | 3.1.4.22 | |
Собственно кишечные ферменты | Мальтаза | 3.2.1.20 |
Сахараза | 3.2.1.48 | |
Изомальтаза | 3.2.1.10 | |
Гамма-амилаза | 3.2.1.3 | |
Лактаза | 3.2.1.23 | |
Трегаяаза | 3.2.1.28 | |
Щелочная фосфатаза | 3.1.3.1 | |
Моноглицеридлипаза | 3.1.1.23 | |
Пептидазы | 3.4.11 - 15 | |
Аминопептидаза * | 3.4.11.2 | |
Дипептидиламинопепти- даза | 3.4.14.1 | |
Карбоксипептидаза | 3.4.12.4 | |
Энтерслептидаза | 3.4.21.9 | |
Гамма-глутамилтранспептидаза | 2.3.2.2 | |
Холестеролэстераза | 3.1.1.13 |
* Аминопептидаза М, аминопешчдаза N, аланинаминопептидаза.
Рис. 5. Упрощенная схема распределения адсорбированных ферментов на поверхности гликокаликса (
Рис. 6. Схема отделения апикального гликокаликса от липопротеииовой мембраны кишечной клетки.
Рис. 7. Щеточная кайма кишечной клетки крысы.
Рис. 8. Роль ферментно-транспортных комплексов в предотвращении конкуренции между мономерами на стадии всасывания.
Несколько лет назад нами впервые препаративно отделен апикальный гликокаликс от плазматической мембраны кишечных клеток крыс без повреждения этой мембраны (рис. 6, 7). Было обнаружено, что в апикальном гликокаликсе, отделяющем мембрану от внеклеточной среды, сосредоточено около 60% панкреатической амилазы, более 80% трипсина и около 20% химотрипсина, адсорбированных на структурах кишечной слизистой оболочки. Следовательно, примерно 40% амилазы, 20% трипсина и 80% химотрипсина, адсорбированных на этой оболочке, могут быть локализованы в латеральном гликокаликсе, т.е. в межмикрозорсинчатом пространстве, а также, возможно, частично на липопротеиновой мембране. В этих же экспериментах продемонстрировано, что такие собственно кишечные ферменты, как сахараза, гамма-амилаза, ди- и трипептидазы, связаны преимущественно с липопротеиновой мембраной. Однако щелочная фосфатаза, рассматриваемая как трансмембранный интегральный фермент, присутствует в довольно значительных количествах (до 20%) в апикальном гликокаликсе. (Сходные данные получены па курах). Кроме того, выявлено, что в апикальном гликокаликсе содержится 3.6% лейцинариламидазы, менее 2% пролилглициндипептидазы и менее 1% глицилпролинди-пептидазы.
Благодаря локализации кишечных ферментов на липопротеиновой мембране в непосредственной близости от транспортных систем мембранное пищеварение обеспечивает сопряжение конечных этапов переваривания и начальных этапов всасывания. Это достигается в результате специальной организации пищеварительных и транспортных функций клеточной мембраны в виде своеобразного пищеварительно-транспортного конвейера, способствующего передаче конечных продуктов гидролиза с фермента на вход в транспортную систему и предотвращению конкуренции между ними за обладание входом в последнюю (рис. 8). Иными словами, мембранный фермент и транспортная система образуют олигомерный комплекс, между частями которого существуют кооперативные и аллостерические взаимодействия (рис. 9, 10).
Мембранное пищеварение наблюдается у организмов на всех уровнях эволюционного развития, т.е. является универсальным механизмом. Оно обнаружено у всех млекопитающих, включая человека, у птиц, рыб, амфибий, круглоротых, а также у беспозвоночных животных, в том числе у насекомых, ракообразных, моллюсков, у различных паразитирующих форм. Существуют данные о наличии мембранного пищеварения у дрожжей, бактерий и в корнях растений.