технологии и открывающиеся в свете этого возможности. Для этого прежде всего необходимо выяснить принципы организации биологических процессов, причем следует помнить, что любой процесс состоит из некоторых последовательных операций. Если полезный эффект возникает лишь в результате завершения процесса в целом, то в этом случае система эволюирует как комплекс, так как отбор идет по ценности общего конечного эффекта, а не по промежуточным эффектам каждого отдельного блока, реализующего промежуточную операцию. Из рассмотрения организации биологических систем и процессов вытекает ряд принципов. Их анализ представлен мною в монографии, опубликованной в 1985 г., и кратко изложен ниже.
Принцип универсальности. Принцип гласит, что основные закономерности строения биологических систем всеобщи. Это означает, что какой-либо механизм, свойственный организмам одного вида или даже открытый у клеток организмов одной группы, будет широко распространен или универсален. Иными словами, он может быть обнаружен у организмов других видов или оказаться всеобщим. Принцип универсальности отражает общность происхождения организмов и единство структурно-функциональной организации жизни как планетарного явления, где перенос массы и энергии возможен лишь при общности ряда его компонентов. Принцип имеет существенное гносеологическое значение, так как заставляет частную закономерность рассматривать как потенциально всеобщую и искать границы ее применения. Одним из доказательств справедливости принципа служат многочисленные универсальные машины, открытые в период новой биологической революции. Кроме того, лишь на основе принципа универсальности можно понять возможность создания межвидовых клеточных гибридов и химерных организмов, а также возможность переноса информации от вида к виду и, что еще более важно, ее экспрессию. Принцип универсальности базируется на принципе блочности.
Принцип блочности. Для структуры и функции на элементарном уровне характерна дискретность, которая выражается в блоковой организации структур, осуществляющих элементарные функции (принцип блочности), и в принципе функционирования (принцип «все или ничего»). Элементарные функции реализуются с помощью определенного набора функциональных блоков. Все многообразие простых и сложных процессов может быть описано как упорядоченная работа соответствующих комбинаций функциональных блоков. Для понимания деятельности организма это важно при интерпретации таких вопросов, как формирование высокоспециализированной системы из единственной оплодотворенной клетки, как единство организма при объяснении отсутствия специфических молекулярных машин в клетках различной специализации и т.д. Принцип блочности существен для понимания высоких темпов эволюции и стабильности признаков на уровне функциональных блоков. Наконец, этим механизмом устанавливается соответствие между генетической и функциональной интерпретацией эволюционного процесса.
Принцип блочности является основой общности биосферы в целом и, в частности, трофических и других взаимодействий между ее частями. Без общих функциональных и строительных блоков было бы невозможно существование круговорота веществ в природе. В практическом смысле этот принцип объясняет неожиданные и тяжелые последствия действия гербицидов, инсектицидов и других специализированных токсикантов. Принцип блочности справедлив не только для функциональных блоков, но также на более низких уровнях (строительные блоки — аминокислоты, моносахариды, нуклеиновые кислоты и т.д.) и на более высоких уровнях (органеллы, клетки, органы, организмы и т.д.).
Принцип «все или ничего». Закон «все или ничего» установлен для возбудимых макросистем, где имеет место незатухающее возбуждение. В дальнейшем продемонстрировано, что по этому принципу работают многие информационные системы, что обеспечивает им ряд преимуществ. Распространение этого закона на деятельность функциональных блоков означает, что блок может находиться либо в состоянии покоя, либо осуществлять работу, которая является единственно возможной в данных условиях. Конкретное применение закона может быть весьма важным. Например, если активный транспорт подчиняется этому закону, то энергия переноса одной молекулы (например, глюкозы) будет одинаковой как по градиенту концентраций, так и против этого градиента. Различия, получаемые при решении термодинамических уравнений, отражают интенсивность и направление пассивной утечки. Ясно, что хотя отдельные функциональные блоки (например, насосы) полностью подчиняются закону «все или ничего», большая популяция таких блоков создает возможность для плавного градуального регулирования процесса.